Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Umfang von Kreisen – Erklärung

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 53 Bewertungen
Die Autor*innen
Avatar
Team Digital
Umfang von Kreisen – Erklärung
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse

Umfang von Kreisen – Erklärung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Umfang von Kreisen – Erklärung kannst du es wiederholen und üben.
  • Gib an, welche Formeln für den Umfang eines Kreises gelten.

    Tipps

    Der Durchmesser entspricht dem doppelten Radius.

    $\pi$ gibt den Proportionalitätsfaktor $\frac{U}{d}$ an.

    Lösung

    Der Durchmesser $d$ eines Kreises geht geradlinig durch den Mittelpunkt $M$ und berührt auf beiden Seiten die Kreislinie.

    Der Radius $r$ eines Kreises geht vom Mittelpunkt $M$ aus geradlinig bis zur Kreislinie.

    Der Radius entspricht somit der Hälfte des Durchmessers, also $d=2 \cdot r $.

    Der Umfang entspricht der Länge der Kreislinie. Und $\pi$ gibt den Proportionalitätsfaktor $\frac{U}{d}$ an.

    Folgende Formeln sind im Kreis korrekt:

    • $U=2 \cdot r \cdot \pi$
    • $U=d \cdot \pi$
    Folgende Formeln sind im Kreis nicht korrekt:
    • $U=2 \cdot d \cdot \pi$
    • $U=2 \cdot d \cdot r$

  • Berechne den Proportionalitätsfaktor.

    Tipps

    $\pi$ gibt den Proportionalitätsfaktor $\dfrac{U}{d}$ an.

    Um den Proportionalitätsfaktor zu berechnen, teilen wir Umfang durch den Durchmesser.
    Beispiel: $ U = 50~\text{cm}$ und $d=15{,}9~\text{cm}$
    Rechnung: $\dfrac{U}{d} = \dfrac{50}{15,9} = 3{,}144$

    Lösung

    Der Proportionalitätsfaktor wird mit dem Quotienten $\frac{U}{d}$ angegeben. $U$ ist der Umfang und $d$ der Durchmesser eines Kreises. Wenn man den Umfang von Alltagsgegenständen mit einem Kreis als Querschnitt misst, erhält man verschiedene Werte. In dieser Aufgabe sind einige Beispiele genannt. Es fällt auf, dass sich alle Quotienten um den Wert $3{,}14$ herum einordnen. Diese Zahlen nähern sich der irrationalen Zahl $\pi$ an.

    Die Ergebnisse der Rechnungen sind:

    • $\frac{20,8}{6,6}~\approx~3{,}151$
    • $\frac{25,8}{8,2}~\approx~3{,}146$
    • $\frac{60,3}{19,2}~\approx~3{,}141$

  • Berechne den Umfang der einzelnen Kreise.

    Tipps

    Setze $r$ in die Formel $U=\pi \cdot 2 \cdot r$ ein.

    Setze $d$ in die Formel $U=\pi \cdot d $ ein.

    Lösung

    Der Umfang des Kreises kann mit der Formel $U=\pi \cdot 2 \cdot r$ oder $U=\pi \cdot d$ berechnet werden. Je nachdem, welchen Wert du gegeben hast, kannst du die passende Formel wählen. Grundsätzlich ist der Radius immer die Hälfte des Durchmessers.

    Folgende Paare gehören zusammen:

    • $d=5~\text{cm} ~ \rightarrow ~ U = \pi \cdot d ~ \rightarrow ~ \pi \cdot 5~\text{cm} = 15{,}70~\text{cm} = U$
    • $r=5~\text{cm} ~ \rightarrow ~ U = \pi \cdot 2 \cdot r ~ \rightarrow ~ \pi \cdot 2 \cdot 5~\text{cm} = 31{,}42~\text{cm} = U$
    • $r=4~\text{cm} ~ \rightarrow ~ U = \pi \cdot 2 \cdot r ~ \rightarrow ~ \pi \cdot 2 \cdot 4~\text{cm} = 25{,}13~\text{cm} = U$
    • $d=4~\text{cm} ~ \rightarrow ~ U = \pi \cdot d ~ \rightarrow ~ \pi \cdot 4~\text{cm} = 12{,}56~\text{cm} = U$

  • Ermittle den Umfang der Kreise.

    Tipps

    Beispiel: $r = 5~\text{cm}$
    Rechnung: $U=\pi \cdot 2 \cdot 5 = 31{,}42~\text{cm}$

    Beispiel: $d=9~\text{cm}$
    Rechnung: $U=\pi \cdot 9 = 28{,}27~\text{cm}$

    Lösung

    Der Umfang des Kreises wird mit der Formel $U=\pi \cdot d$ oder $U=\pi \cdot 2 \cdot r $ berechnet.

    Folgender Umfang ist kleiner als $10~\text{cm}$.

    • $r=1{,}5~\text{cm}$, weil $U=\pi \cdot 2 \cdot 1{,}5 = 9{,}42~\text{cm}$
    • $d=1{,}5~\text{cm}$, weil $U=\pi \cdot 1{,}5 = 4{,}71~\text{cm}$
    • $d=2~\text{cm}$, weil $U=\pi \cdot 2 = 6{,}28~\text{cm}$
    Folgender Umfang ist größer als $20~\text{cm}$.
    • $r=3{,}5~\text{cm}$, weil $U=\pi \cdot 2 \cdot 3{,}5 = 21{,}99~\text{cm}$
    • $r=4~\text{cm}$, weil $U=\pi \cdot 2 \cdot 4 = 25{,}13~\text{cm}$
    Folgender Umfang liegt zwischen $10~\text{cm}$ und $20~\text{cm}$.
    • $r=2~\text{cm}$, weil $U=\pi \cdot 2 \cdot 2 = 12{,}57~\text{cm}$
    • $d=3{,}5~\text{cm}$, weil $U=\pi \cdot 3{,}5 = 11~\text{cm}$

  • Bestimme den Umfang der Pizza.

    Tipps

    Der Durchmesser ist mit $30~\text{cm}$ gegeben. Hier ist der Radius gefragt.

    Der Durchmesser entspricht dem doppelten Radius.

    Du musst die $30~\text{cm}$ durch $2$ dividieren, um die richtige Lösung für die Lücke zu erhalten.

    Lösung

    Der Umfang des Kreises wird mit der Formel $U=\pi \cdot d$ oder $U=\pi \cdot 2 \cdot r $ berechnet. In der Aufgabe ist $d$ gegeben und es wird nach $r$ gefragt, deshalb müssen wir die $30~\text{cm}$ durch $2$ dividieren.

    Radius = $15~\text{cm}$
    Umfang der Pizza = $2 \cdot 15 \cdot \pi \approx 94{,}25$

  • Bestimme die fehlenden Werte.

    Tipps

    Achte auf die Umrechnungen. Zum Beipiel sind $1~\text{cm} = 10~\text{mm}$.

    Um von der Einheit $\text{km}$ auf die Einheit $\text{m}$ zu kommen, wird mit dem Faktor $1000$ multipliziert. Umgekehrt wird mit dem Faktor $1000$ dividiert.
    Beispiel: $20~\text{km} \cdot 1000 = 20\,000~\text{m} $

    Lösung

    Der Umfang des Kreises wird mit der Formel $U=\pi \cdot d$ oder $U=\pi \cdot 2 \cdot r $ berechnet. In dieser Aufgabe ist es wichtig zu wissen, wie man die Einheiten umrechnet.
    Es gilt:

    • $1~\text{m} = 10 ~\text{dm} = 100~\text{cm} = 1000~\text{mm}$
    • $1~\text{km} = 1000~\text{m}$
    Alle Ergebnisse sind auf eine Nachkommastelle gerundet.

    Die Lösungen für die Aufgaben sind:

    • Umfang $ = 7{,}5~\text{cm}~ = ~75~\text{mm}~\rightarrow~ U = \pi \cdot 2 \cdot r = 75~\text{mm} ~ \rightarrow r = \dfrac{75~\text{mm}}{\pi \cdot 2} = 11{,}9~\text{cm}$
    • Radius $ =36~\text{cm}~ = ~ 0{,}36 ~\text{m} ~\rightarrow~ U= \pi \cdot 2 \cdot r= 0{,}36~\text{m} \cdot 2 \cdot \pi = 2{,}3~\text{m}$
    • Radius $ = 118~\text{m}~ = ~0{,}118~\text{km}~\rightarrow~ U=\pi \cdot 2 \cdot r = 0{,}118~\text{km} \cdot 2 \cdot \pi = 0{,}7~\text{km}$

    • Durchmesser $=0{,}7~\text{km}~ = ~700~\text{m} ~ \rightarrow ~ U = \pi \cdot d = \pi \cdot 700~\text{m} = 2199{,}1~\text{m}$
    • Umfang $ = 6{,}9~\text{dm} ~ = ~ 0{,}69~\text{m}~ \rightarrow ~ U= \pi \cdot d = \pi \cdot 0{,}69~\text{m}~ \rightarrow ~ d = \dfrac{0,69~\text{m}}{\pi} = 0{,}2~\text{m}$
    • Durchmesser $=75~\text{mm}~ = ~ 7{,}5~\text{cm} ~ \rightarrow ~ U = \pi \cdot d = \pi \cdot 7{,}5~\text{cm} = 23{,}6~\text{cm}$
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.905

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.695

Lernvideos

37.343

Übungen

33.674

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden