Ruhepotenzial – Bedeutung und Aufrechterhaltung
Das Ruhepotenzial beschreibt die elektrische Spannung zwischen Außen- und Innenseite erregbarer Zellen im Ruhezustand. Das Potenzial beträgt etwa -80 mV und wird aktiv durch die Natrium-Kalium-Pumpe, welche Ionen transportiert, um die Zelle in einem polarisierten Zustand zu halten, um erregbare Zellen für die Reizweiterleitung bereitzustellen. Klingt kompliziert? Gar nicht, wir erklären alles klar und knackig!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Ruhepotenzial – Bedeutung und Aufrechterhaltung
Ruhepotenzial – Definition
Im Zytoplasma von Zellen und in der Zwischenzellflüssigkeit liegen positiv und negativ geladene Ionen vor. Wenn zwischen den Ladungen außerhalb und innerhalb der Zellen ein Ungleichgewicht herrscht, spricht man von einem Potenzial, das in Volt gemessen wird. Erregbare Zellen wie Nerven-, Sinnes- und Muskelzellen können dieses Potenzial ändern, wenn sie durch starke Reize erregt werden.
Das Ruhepotenzial (oder auch: Ruhemembranpotenzial) beschreibt die elektrische Spannung zwischen Außen- und Innenseite erregbarer Zellen im Ruhezustand. Dem steht das Aktionspotenzial gegenüber: eine vorübergehende Abweichung vom Ruhepotenzial durch eine Erregung.
Ruhepotenzial – Nervenzelle
Wie bereits erläutert führt die unterschiedliche Verteilung der Ionen innerhalb und außerhalb der Zelle zur Entstehung eines Potenzials. Das Ruhepotenzial bei Nervenzellen ist negativ und liegt bei etwa –70 Millivolt (mV).
Fehleralarm
Viele Schülerinnen und Schüler verwechseln das Ruhepotential mit dem Aktionspotential. Das Ruhepotential ist der stabile, negative Wert einer unerregten Zelle, während das Aktionspotential eine kurzzeitige Umkehr dieses Wertes darstellt.
Ruhepotenzial – Ionenverteilung
Die ungleiche Ionenverteilung über die Zellmembran sieht beim Ruhepotenzial wie folgt aus:
- Innerhalb der Zelle (Zytoplasma): hohe Konzentration an Kaliumionen ($K^{+}$) und organischen Anionen
- Außerhalb der Zelle: hohe Konzentration an Natriumionen ($Na^{+}$) und Chloridionen ($Cl^{-}$)
Das Zellinnere wird dabei durch eine semipermeable (halb durchlässige) Membran vom Zelläußeren getrennt.
Ruhepotenzial – Entstehung und Aufrechterhaltung
Wie du nun weißt, befinden sich im Zytoplasma von erregbaren Zellen negativ geladene organische Anionen und positiv geladene Kaliumionen ($K^{+}$). In der Zwischenzellflüssigkeit um die erregbaren Zellen befinden sich negativ geladene Chloridionen ($Cl^{-}$) und positiv geladene Natriumionen ($Na^{+}$).
Da sich entgegengesetzte Ladungen (Kationen und Anionen) anziehen, ziehen sich die $Na^{+}$-Ionen und $Cl^{-}$-Ionen außerhalb der Zelle an. Im Inneren der Zelle ziehen sich die organischen Anionen und die $K^{+}$-Ionen gegenseitig an. Gleichzeitig stoßen sich die Anionen im Inneren und außerhalb der Zellen ab, wie sich auch die Kationen innen und außen gegenseitig abstoßen.
Nach den Gesetzen der Diffusion und Osmose bewegen sich Teilchen aufgrund des Konzentrationsgradienten von Bereichen höherer Konzentration zu Bereichen niedrigerer Konzentration, wodurch Konzentrationsunterschiede ausgeglichen werden.
Somit bewegen sich die $Na^{+}$- und $Cl^{-}$-Ionen aufgrund der diffusionsbedingten Kräfte ins Zytoplasma. Die $K^{+}$-Ionen und die organischen Anionen bewegen sich durch Poren in der Zellmembran in die Zwischenzellflüssigkeit.
Im Ruhepotenzial befinden sich demnach $Na^{+}$, $Cl^{-}$ und auch ein gewisser Anteil an $K^{+}$-Ionen in der Zwischenzellflüssigkeit und $K^{+}$ sowie organische Anionen befinden sich im Zytoplasma. Dieses Potenzial beträgt etwa –70 Millivolt (mV). Je nach Organismus und Nervenzelle kann es auch zwischen –60 und –100 mV liegen.
Elektrochemischer Gradient
Es ergibt sich zunächst ein elektrochemischer Gradient. Über die Membran hinweg gibt es ein Konzentrationsgefälle, Kaliumionen ($K^{+}$) liegen innerhalb der Zelle beispielsweise in einer deutlich höheren Konzentration vor als außerhalb. Ionen haben eine zufällige Eigenbewegung (brownsche Molekularbewegung) und streben einen Konzentrationsausgleich an – das haben wir weiter oben bereits behandelt. So diffundieren die Ionen vom Ort höherer zum Ort niedrigerer Konzentration – es entsteht ein chemischer Gradient.
Bewegen sich positiv geladene Kaliumionen ($K^{+}$) nun beispielsweise aus der Zelle heraus, nimmt die elektrische Ladung innerhalb der Zelle ab und es entsteht ein Spannungsfeld. Nicht nur die Teilchen tendieren dazu, Konzentrationen auszugleichen, sondern auch elektrische Ladungen tendieren zum Ausgleich. Der elektrische Gradient wirkt dem chemischen Gradienten also entgegen, indem er Kaliumionen ($K^{+}$) in unserem Beispiel zurückhält. Da beide Gradienten nicht klar voneinander getrennt werden können, spricht man vom elektrochemischen Gradienten.
Selektive Permeabilität
Die Ionen werden von der semipermeablen Membran an einer Gleichverteilung gehindert, denn sie ist nicht für alle Ionen gleich durchlässig. Im Ruhezustand ist die Zellmembran vor allem für Kaliumionen ($K^{+}$) durchlässig, sodass diese hauptverantwortlich für die Entstehung des Ruhepotenzials sind. Sie strömen aus der Zelle heraus.
Natrium-Kalium-Pumpe
Obwohl $Na^{+}$-Ionen die Zellmembranen kaum durchdringen können, diffundieren immer wieder $Na^{+}$-Ionen durch sogenannte Leckströme in das Zellinnere. Diese Natrium-Leckströme gefährden das Ruhepotenzial.
Natrium-Kalium-Pumpen sind Ionenpumpen, die in den Zellmembranen eingebettet sind. Sie befördern unter Energieverbrauch, also unter dem Verbrauch von Adenosintriphosphat (ATP), jeweils drei positiv geladene $Na^{+}$-Ionen aus dem Zellinnenraum heraus und im Gegenzug jeweils zwei positiv geladene $Ka^{+}$-Ionen in die Zelle hinein. Die Energie in Form von ATP benötigen die Ionenpumpen, da dieser aktive Ionentransport dem passiv verlaufenden Konzentrationsgefälle entgegenwirken muss.
Wusstest du schon?
Das Gehirn verbraucht etwa 20 Prozent der gesamten Energie des Körpers. Ein Großteil dieser Energie wird verwendet, um das Ruhepotential der Nervenzellen aufrechtzuerhalten. Dein Gehirn ist also ein echter Energiefresser!
Ruhepotenzial – Bedeutung
Nur die Aufrechterhaltung des Ruhepotenzials gewährleistet, dass erregbare Zellen durch die Einwirkung eines Reizes auch erregt werden können. Für die Reizweiterleitung und die entsprechenden Reaktionen ist das Ruhepotenzial somit von großer Bedeutung, zum Beispiel für die normale Funktion von Nerven- und Muskelzellen.
Ausblick – Das lernst du nach Ruhepotenzial – Bedeutung und Aufrechterhaltung
Bereite dich auf weitere spannende Themen vor! Die Videos zum Aktionspotenzial und Erregungsleitung in Nervenzellen zeigen dir die nächsten Schritte. Verstehe, wie das Ruhepotential aufrechterhalten wird und was passiert, wenn Nervenzellen erregt werden.
Ruhepotenzial – Zusammenfassung
- Das Ruhepotenzial (oder auch: Ruhemembranpotenzial) beschreibt die elektrische Spannung zwischen Außen- und Innenseite der Membran einer unerregten Zelle.
- Bei Nervenzellen liegt das Ruhepotenzial bei etwa –70 Millivolt (mV).
- Das Ruhepotenzial beruht auf dem elektrochemischen Gradienten, der selektiven Permeabilität der Zellmembran und den Natrium-Kalium-Pumpen.
- Das Ruhepotenzial ermöglicht die Erregbarkeit von Zellen und stellt somit die normale Funktion von Muskel- und Nervenzellen sicher.
Häufig gestellte Fragen zum Thema Ruhepotenzial
Transkript Ruhepotenzial – Bedeutung und Aufrechterhaltung
Hallo, mein Name ist Sabine und in diesem Video möchte ich dir das Ruhepotential näher erklären. Dazu betrachten wir näher die Zellmembran. Diese besteht, wie du sicherlich schon weißt, aus einer Doppellipidschicht, die teilweise von Tunnelproteinen unterbrochen wird. Auf der Außenseite der Membran, das ist bei mir oben, ist die Zwischenzellflüssigkeit und unten auf der Innenseite der Membran ist das Zytoplasma. In beiden Flüssigkeiten sind Stoffe als Ionen gelöst. Ionen sind geladene Teilchen, und wenn sich auf der Außenseite zum Beispiel mehr negative Ionen befinden als auf der Innenseite, liegt ein Membranpotenzial vor, das in Volt gemessen werden kann. Sinnes-, Nerven-, und Muskelzellen sind in der Lage ihr Membranpotenzial zu ändern, wenn sie durch starke äußere Reize erregt werden. Im unerregten Zustand heißt dieses Potenzial "Ruhepotential", das durch eine besondere Ionenverteilung gekennzeichnet ist, die wir uns jetzt anschauen. Im Zytoplasma befinden sich organische Anionen. Diese werden von der Zelle produziert und sind so groß, dass sie unmöglich durch die Zellmembran durchpassen. In der Zwischenzellflüssigkeit befinden sich positiv geladene Natriumionen und negativ geladene Chloridionen, diese hast du mit der Nahrung aufgenommen. Das kannst du dir ganz leicht merken, denn Natrium und Chlorid sind Natriumchlorid zusammen und das ist das ganz normale Kochsalz aus der Küche. Zu guter Letzt gibt es noch im Zytoplasma, auf der Innenseite der Membran, positiv geladene Kaliumionen. Dir ist sicherlich bekannt, dass entgegengesetzte Ladungen sich anziehen. Das heißt, im Zytoplasma halten sich organische Anionen und Kaliumionen gegenseitig fest und in der Zwischenzellflüssigkeit ziehen sich Natrium- und Chloridionen gegenseitig an. Das heißt aber auch, dass organische Anionen und Chloridionen sich gegenseitig abstoßen, weil sie beide negativ geladen sind und dass Natrium- und Kaliumionen sich auch abstoßen, aufgrund ihrer positiven Ladung. Jetzt ist dein Wissen zu Diffusion und Osmose gefragt. Die Teilchen sind immer danach bestrebt, die Konzentrationsunterschiede zwischen Zwischenzellflüssigkeit und Zytoplasma auszugleichen. Das heißt, Natriumionen und Chloridionen möchten gerne in das Zytoplasma wandern und organische Anionen und Kaliumionen möchten in die Zwischenzellflüssigkeit gelangen. Jedoch sind organische Anionen, Chloridionen und Natriumionen dafür viel zu groß. Schuld daran ist die Hydrathülle, die ich jetzt mal am Beispiel von Natriumionen erklären möchte. Wenn Kochsalz in Lösung geht, werden Natrium- und Chloridionen voneinander getrennt. Um das Natriumion sammeln sich ganz viele kleine Wassermoleküle, die eine Hülle bilden, eine sogenannte Hydrathülle. Diese Hydrathülle ist so groß, dass sie nicht durch die Membran passt. Für die Kaliumionen sind aber kleine Poren in der Membran geöffnet, durch die sie dann hindurchdiffundieren können. Das heißt, in der Zwischenzellflüssigkeit befinden sich einige Kaliumionen, die dafür sorgen, dass die Außenseite der Membran positiv geladen ist und die Innenseite negativ. Das ist das Ruhepotential. Das Ruhepotential liegt bei ungefähr -80 mV. Jedoch schaffen es immer wieder einige Natriumionen in das Zytoplasma. Das nennt man dann Natriumlegstrom, der ziemlich gefährlich werden kann, da er das Membranpotenzial ausgleicht. Deswegen gibt es Natriumkaliumpumpe. Diese pumpt Kaliumionen wieder zurück in das Zellinnere und Natriumionen wieder nach außen. Dazu benötigt die Natriumkaliumpumpe aber Energie, das heißt, es wird ATP verbraucht. Ich hoffe, dieser Film hat dir gefallen und konnte dir beim Lernen helfen. Vielen Dank für das Zusehen und bis bald Sabine!
Ruhepotenzial – Bedeutung und Aufrechterhaltung Übung
-
Beschreibe die Ionenverteilung im Ruhepotential.
TippsEntgegengesetzte Ladungen ziehen sich an.
Die Natrium-Kalium-Pumpe hilft dabei, das Ruhepotential aufrechtzuerhalten.
LösungDie Zellmembran besteht aus einer Lipiddoppelschicht. Diese ist von Tunnelproteinen durchbrochen. Auf der Außenseite der Membran ist die extrazelluläre Flüssigzeit. Im Zellinneren befindet sich das Zytoplasma. In beiden Flüssigkeiten sind Ionen gelöst.
Im Zytoplasma sind hauptsächlich organische Anionen und Kaliumionen zu finden. Natriumionen und Chloridionen sind hier nur in sehr geringen Mengen vorhanden. Diese sind hauptsächlich in der extrazellulären Flüssigkeit zu finden, wo wiederum die Anzahl der Kaliumionen und der Anionen sehr gering ist. Jedoch können die Kaliumionen durch die Membran diffundieren, da die Membranen eine hohe Leitfähigkeit für Kaliumionen aufweisen.
Die Zellmembran ist auch für Natriumionen durchlässig, jedoch ist die Leitfähigkeit für diese geringer als für die Kaliumionen. Damit es hierbei nicht zu einem Natriumleckstrom kommt, wirkt die Natrium-Kalium-Pumpe.
-
Beschreibe das Ruhepotential.
TippsIntrazellulär ist eine Nervenzelle negativ geladen.
LösungAn der Membran einer ruhenden, also unerregten Zelle sind Ionen ungleich verteilt. Innerhalb der Membran befinden sich überwiegend Kaliumionen und organische Anionen. Außerhalb sind Natrium- und Chloridionen zu finden.
Kaliumionen können über Poren auch nach außen gelangen. Die organischen Anionen sind zu groß, sie können das Innere der Zelle nicht verlassen. Somit wird das Zellinnere negativ aufgeladen und die Außenseite positiv. Es entsteht ein elektrisches Feld. Die zunehmende negative Aufladung der Membraninnenseite behindert den Ausstrom weiterer Kaliumionen. Herrscht ein bestimmtes Potential, nämlich das Ruhepotential, ist der Diffusionsdruck für Kaliumionen genauso groß wie der gegenläufige Sog, der das positiv geladene Kaliumion wieder in das Innere zieht. Ein- und Ausstrom halten sich die Waage.
Das Ruhepotential pendelt und beträgt je nach Zelltyp zwischen -50 mV und -100 mV, bei den meisten Nervenzellen liegt es zwischen -70 mV und -90 mV.
-
Erläutere die Wirkung von Temperatur und destilliertem Wasser auf das Ruhepotential.
TippsBei hohen Temperaturen laufen chemisch-physikalische Prozesse schneller ab.
LösungDas Ruhepotential kann durch Außenfaktoren beeinflusst werden.
Die Temperatur verändert die Geschwindigkeit der ablaufenden Prozesse. Sinkt die Temperatur ab, so laufen die Prozesse langsamer ab, auch die Wanderung der Ionen ist verlangsamt. Das bedeutet, der Wert des Potentials wird sich nicht ändern, aber es wird sich langsamer aufbauen.
Bei Zugabe von destilliertem Wasser wird die Ionenkonzentration im Außenbereich verdünnt. Das bedeutet, dass nun mehr Kaliumionen bestrebt sind, nach außen zu diffundieren. Nun sind nicht mehr viele Kaliumionen im Innenbereich, was bedeutet, dass das Ruhepotential negativer wird.
-
Bestimme, wie sich das Potential der Zelle verändert.
TippsDie negativen Cyanidionen der Blausäure hemmen die ATP-Bildung. Die Natrium-Kalium-Pumpe benötigt Energie in Form von ATP, um ihre Arbeit zu verrichten.
Die Natrium-Kalium-Pumpe dient der Aufrechterhaltung des Ruhepotentials. Sie pumpt Natrium und Kalium durch die Membran, um die Ladungen voneinander zu trennen.
Das Ammoniumion $NH_4^+$ ist positiv geladen. Es kann die Zellmembran nicht passieren.
LösungLena konnte folgende Beobachtungen machen:
Bei der Zugabe von NaCl wurde das Ruhepotential etwas negativer. Die Natriumionen und Chloridionen wandern ins Zellinnere. Allerdings arbeitet die Natrium-Kalium-Pumpe einwandfrei und befördert einige der Natriumionen wieder nach außen.
Bei der Zugabe von KCl wurde das Potential positiver. Die Kaliumionen sind positiv und wandern ins Zellinnere, dieses wird positiver. Die Chloridionen haben keinen großen Einfluss, da sie nur in geringen Maßen ins Innere gelangen.
Bei der Zugabe von Ammoniumchlorid wurde das Potential etwas positiver. Es wandern hierbei nur sehr wenige Chloridionen ins Zellinnere und erhöhen die negative Ladung daher weniger stark.
Bei der Zugabe von Blausäure sinkt das Ruhepotential laufend ab. Die negativen Cyanidionen der Blausäure hemmen die ATP-Produktion. Diese Energie wird aber für die Natrium-Kalium-Pumpe benötigt. Sie kann nun nicht mehr richtig arbeiten und das einströmende Natrium kann nicht mehr nach außen transportiert werden.
-
Bewerte die Aussagen zum Ruhepotential.
TippsGleiche Ladungen stoßen sich ab.
LösungDie Zellmembran ist in geringem Umfang auch für Natriumionen durchlässig. Das bedeutet, dass ein paar Natriumionen hindurch diffundieren und ins Zellinnere gelangen können. Das kann zu einem Ausgleich des Membranpotentials führen, denn wenn positiv geladene Ionen in das negative Zellinnere gelangen, wird das Ruhepotential positiver.
Es ist also wichtig, dass zur Aufrechterhaltung des Ruhepotentials aktive Transportvorgänge stattfinden. Diese werden von der Natrium-Kalium-Pumpe durchgeführt. Bei jedem Transportvorgang werden drei Natriumionen aus der Zelle heraustransportiert und zwei Kaliumionen hineingeschleust. Somit wird das Potential aufrechterhalten. Dazu benötigt die Pumpe Energie in Form von ATP.
Die Hydrathülle vergrößert ein Ion zusätzlich, sie erleichtert nicht die Diffusion.
-
Erkläre den Weg vom Reiz zur Reaktion.
TippsDer Begriff Transduktion kommt aus dem Lateinischen und steht für „Überführung“.
Der Begriff der Transformation kommt ebenso aus dem Lateinischen und heißt übersetzt umwandeln.
LösungLebewesen besitzen die Fähigkeit, Reize aus ihrer Umwelt aufzunehmen und auf diese zu reagieren. Solche Reize können von außen auf das Lebewesen wirken (Licht, Druck, Temperatur, usw.) oder von innen aufgrund einer Zustandsänderung im Organismus wirken.
Der Reiz wird von speziellen sensorischen Rezeptoren aufgenommen. Diese bewirken eine Veränderung des Membranpotentials. Diese Änderung wird als Erregung oder Rezeptorpotential bezeichnet. Es folgt die Transduktion, also Weiterleitung der Reizenergie, und Transformation. Bei diesem Vorgang wird das Rezeptorpotential in Aktionspotenzial umgewandelt. Nun folgen die Schritte Transmission und Verarbeitung (=Integration).
Auch Pflanzen können auf Reize reagieren. Die Reizaufnahme erfolgt bei ihnen zum Beispiel durch lichtsensible Pigmente. Die Signalweiterleitung erfolgt auf chemischem Weg, denn Pflanzen besitzen keine Nervenzellen. Ihre Reaktion kann zum Beispiel eine Wachstumsbewegung sein. Vielleicht kennst du den Spruch „Die Pflanze wächst zum Licht hin.“ Damit reagiert sie auf den Lichtreiz mit Wachstum zur Reizquelle hin.
Bioelektrizität in Zellen – Entstehung und Bedeutung
Vom Reiz zum Aktionspotenzial
Aktionspotenzial – Grundlage der Informationsweiterleitung
Ruhepotenzial – Bedeutung und Aufrechterhaltung
Nervensystem – Codierung von Informationen
Reizrezeptoren – Grundlage der Sinneswahrnehmung
Erregungsleitung innerhalb der Nervenzelle
Nervenzelle – Leitungsgeschwindigkeit
Synapse – Aufbau und Funktion
Synapse – hemmende und erregende Synapsen
Farbsehen – Reizverarbeitung in der Netzhaut
Kontrastsehen – vom rezeptiven Feld zur optischen Täuschung
8.883
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.850
Lernvideos
37.590
Übungen
33.704
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Biologie
- Dna Aufbau
- Organe Mensch
- Meiose
- Pflanzenzelle
- Blüte Aufbau
- Feldmaus
- Chloroplasten
- Chlorophyll
- Rna
- Chromosomen
- Rudimentäre Organe
- Wirbeltiere Merkmale
- Mitose
- Seehund
- Modifikation Biologie
- Bäume Bestimmen
- Metamorphose
- Synapse
- Synapse Aufbau und Funktion
- Ökosystem
- Amöbe
- Fotosynthese
- Nahrungskette Und Nahrungsnetz
- Das Rind Steckbrief
- Ökologische Nische
- Zentrales Und Vegetatives Nervensystem
- Glykolyse
- Mutation Und Selektion
- Quellung und Keimung
- Rückenmark
- Skelett Mensch
- Sinnesorgane
- Geschmackssinn
- Analoge Organe
- Säugetiere
- Vermehrung Von Viren
- Organisationsstufen
- Symbiose
- Mikroorganismen
- Wie entsteht Blut einfach erklärt
- Vererbung Blutgruppen
- Blutgruppen einfach erklärt
- Sprossachse
- Tierzelle Aufbau
- Wie Entstehen Zwillinge
- Archaeopteryx
- Diabetes
- Moose
- Treibhauseffekt
- Aufbau Moos
Hallo, Teilchen sind nicht bestrebt! Sie haben keinen Willen. Diffusion ist ein zufallsbasierter Vorgang und hat nichts damit zu tun, dass Moleküle irgendetwas wollen. LG
Icgh würde auf unterschiedliche Kanaltypen eingehen, hier sieht es so aus, als würden K+ und Na+ denselben Kanal nutzen. Und: ich versuche bei meinen Ss immer wieder dagegen anzugehen, dass Teilchen "ein Bestreben" haben, oder Konzentrationsgefälle ausgleichen "möchten". Wenn das dann in Lernvideos auch so gesagt wird, ist das kontraproduktiv. Ansonsten: nicht schlecht!
Meiner Meinung nach, sehr schlecht Erklärt. Habe das Ruhepotential verstanden, durch den Unterricht und wurde gerade komplett in jeglicher Hinsicht verwirrt
Hi, wenn eigentlich nur Kaliumionen in die interzelluläre Flüssigkeit diffundieren können, wie kommen dann die Natriumionen ins Cytoplasma?
Sooo ein tolles Video! Ich schreib morgen eine Biologie Schulaufgabe und hab bis jetzt gar nichts verstanden - bis zu deinem Video ❤️ Ich liebe die Merkgeschichte :-)