f(x) = x² – Wertetabelle und Funktionsgraph: Die Normalparabel
In diesem Video lernst du alles über die quadratische Funktion . Du erfährst, wie man die Funktionswerte berechnet, den Funktionsgraphen zeichnet und die speziellen Punkte der Normalparabel bestimmt. Interessiert? Das und vieles mehr findest du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema f(x) = x² – Wertetabelle und Funktionsgraph: Die Normalparabel
Quadrate und quadratische Funktionen
Den Flächeninhalt eines Quadrats kannst du berechnen, wenn du die Kantenlänge des Quadrats kennst. Beträgt die Kantenlänge Längeneinheit, so beträgt der Flächeninhalt Flächeneinheit. Ein Quadrat mit einer Kantenlänge von Längeneinheiten hat einen Flächeninhalt von Flächeneinheiten. Bei Längeneinheiten erhalten wir Flächeneinheiten und bei Längeneinheiten beträgt der Flächeninhalt Flächeneinheiten. Ein Quadrat der Kantenlänge hat auch den Flächeninhalt , denn dieses Quadrat hat keine Ausdehnung.
Zu jeder vorgegebenen Kantenlänge findest du einen eindeutig bestimmten Flächeninhalt . Daher kannst du die Zuordnung von zu durch eine Funktion beschreiben. Die Gleichung
Die passende Funktion für den Flächeninhalt eines Quadrats ist eine quadratische Funktion, nämlich die Funktion
Die Normalparabel
In diesem Video erklären wir dir die spezielle quadratische Funktion . Für positive Werte von beschreibt diese Funktion den Flächeninhalt eines Quadrats der Kantenlänge . Negative Werte für kannst du zwar nicht als Kantenlängen verstehen – aber du kannst sie trotzdem in die Funktion einsetzen. Fasst du die Werte der Variablen und die zugehörigen Funktionswerte der Funktion zu Paaren zusammen, so erhältst du eine Wertetabelle dieser quadratischen Funktion:
Diese Wertepaare kannst du als Punkte in ein Koordinatensystem eintragen.
Verbindest du alle Punkte der Form durch eine Linie, so erhältst du den Funktionsgraphen der Funktion . Du darfst die Punkte, die du aus der Wertetabelle übernommen hast, aber nicht einfach mit dem Lineal verbinden. Denn der Graph einer quadratischen Funktion ist überall gekrümmt und nirgends gerade!
Um den Graphen möglichst genau zu zeichnen, kannst du eine Parabelschablone benutzen. Das geht aber auch frei Hand. Dazu ist es nützlich, genügend Wertepaare des Funktionsgraphen zu berechnen.
Normalparabel – Definition
Den Funktionsgraphen der speziellen quadratischen Funktion nennt man Normalparabel. Manchmal bezeichnet man auch solche Parabeln im Koordinatensystem als Normalparabeln, die Verschiebungen oder Spiegelungen dieses Funktionsgraphen sind. Alle diese Normalparabeln sind die Graphen einer quadratischen Funktion der Form:
Der Faktor vor dem Term ist bei einer Normalparabel entweder oder . Denn normal bedeutet normiert, das heißt, der Faktor vor hat den Betrag .
Spezielle Punkte der Normalparabel
Der Graph der Funktion ist eine Parabel, die durch den Punkt verläuft, denn . Der Punkt ist der Scheitelpunkt dieser Parabel. Für jede Funktion ist der -Achsenabschnitt des Funktionsgraphen. Der -Achsenabschnitt der Normalparabel ist also . Der Scheitelpunkt hat von allen Punkten des Graphen den kleinsten -Wert. Man nennt diesen Punkt daher den Tiefpunkt des Funktionsgraphen. Der -Wert ist der kleinste Funktionswert – das bedeutet, dass alle anderen Funktionswerte größer als sind. Die Funktion nimmt also nur nicht negative Funktionswerte an.
Symmetrie der Normalparabel
Die -Werte und haben denselben Abstand vom -Wert des Scheitelpunkts. Die zugehörigen Funktionswerte und sind gleich,
Eigenschaften der Funktionswerte
Je größere positive -Werte du in die Funktion einsetzt, desto größer werden die Funktionswerte. Bei den negativen -Werten ist es umgekehrt: Je kleiner die negativen -Werte sind, desto größer sind die zugehörigen Funktionswerte.
Kurze Zusammenfassung zum Video f(x)=x² – Wertetabelle und Funktionsgraph: Die Normalparabel
In diesem Video wird dir die Funktion verständlich erklärt. Du erfährst, wie du mit dieser Formel die Punkte der Normalparabel berechnen und den Funktionsgraphen zeichnen kannst. Zu dem Video gibt es Übungen mit interaktiven Aufgaben sowie ein Arbeitsblatt. Du kannst dein neues Wissen über die Normalparabel also gleich ausprobieren!
Transkript f(x) = x² – Wertetabelle und Funktionsgraph: Die Normalparabel
Ah! Ein Quadrat. Die Seitenlänge zum Quadrat ergibt den Flächeninhalt. Hast Du ein Quadrat gegeben, ein Quadrat, dessen Seitenlänge eine Längeneinheit beträgt, dann hat es eine Fläche von einer Flächeneinheit. Vergrößerst du die Seitenlänge auf zwei Längeneinheiten, hat das Quadrat schon eine Fläche von vier Flächeneinheiten. Bei einer Seitenlänge von drei Längeneinheiten sind es sogar neun Flächeneinheiten. Du kannst das Quadrat auch verkleinern. Bei 0,5 Längeneinheiten haben wir 0,25 Flächeneinheiten. Machst du das Quadrat immer kleiner, dann verschwindet es irgendwann sogar ganz. Mit einer Seitenlänge von 0 Längeneinheiten ist natürlich auch die Fläche 0 Flächeneinheiten groß. Du kannst jeder Seitenlänge jeweils einen konkreten Flächeninhalt zuweisen. Deshalb handelt es sich hier um eine eindeutige Zuordnung, also eine Funktion. Weil du die Funktionswerte durch quadrieren erzeugst, heißt eine solche Funktion quadratische Funktion. In diesem Video wird die spezielle quadratische Funktion mit der Gleichung 'f von x' ist gleich 'x Quadrat' betrachtet. Quadrieren kannst du auch negative Zahlen. Dafür gibt es dann aber keine geometrische Interpretation wie den Flächeninhalt eines Quadrats. Minus 1' zum Quadrat ist beispielsweise 'minus 1' mal 'minus 1'. Weil 'minus mal minus' plus ergibt, erhältst du als Ergebnis plus 1. Entsprechend ist 'minus 0,5' zum Quadrat plus 0,25', minus 2' zum Quadrat ist 'plus 4' und 'minus 3' zum Quadrat ist 'plus 9'. Das ist eine Wertetabelle dieser Funktion. Wie viele andere Funktionen besitzt auch diese quadratische Funktion einen Graphen. Wir können ihn erzeugen, indem wir die ermittelten Wertepaare in das Koordinatensystem eintragen. Wir haben 1|1, 2|4, 3|9, 0,5|0,25, 0|0, 'minus 0,5' |0,25, 'minus 1'|1, 'minus 2' |4 und 'minus 3' |9. Diese Punkte dürfen wir jetzt aber nicht mit dem Lineal verbinden! Der Graph einer quadratischen Funktion ist nämlich immer gekrümmt. Es gibt spezielle parabelförmige Schablonen, mit deren Hilfe man die Parabeln gut zeichnen kann. Mit etwas Geschick kannst du das aber auch Freihand machen. Der Graph der Funktion 'f von x' ist gleich 'x Quadrat' heißt Normalparabel. Ist von der Normalparabel die Rede, ist immer dieser Graph gemeint. In manchen Zusammenhängen werden auch Parabeln als Normalparabeln bezeichnet, die im Koordinatensystem verschoben oder gespiegelt wurden. Dann kann ihre Funktionsgleichung auch noch andere Glieder enthalten. Der Faktor des quadratischen Glieds nimmt aber auch in diesen Fällen nur die Werte 'minus 1' oder 'plus 1' an. Das "normal" im Begriff Normalparabel hat nämlich nichts mit "Normalität" zu tun! Es leitet sich davon ab, dass diese Funktion auf den Betrag 1 normiert ist. Sie bildet damit so etwas wie die Grundform einer Parabel, die weder gestreckt noch gestaucht wurde. Zurück zur Funktion 'f von x' gleich 'x Quadrat': Der Punkt 0| 0 ist ihr Scheitelpunkt. An diesem Punkt schneidet die Normalparabel die y-Achse, es handelt sich also um ihren y-Achsenabschnitt. Er hat von allen x-Werten den kleinsten y-Wert. Daher wird er auch Tiefpunkt genannt. Weil 0 der kleinste Funktionswert der Normalparabel ist, nimmt der Graph nur nichtnegative Funktionswerte an. Damit sind alle positiven Zahlen und die Null gemeint. Betrachte einmal einen Punkt auf der positiven x-Achse, zum Beispiel 3. Nimm nun denjenigen Punkt auf der negativen x-Achse dazu, der genauso weit von der 0 entfernt ist: Hier also 'minus 3'. Die Funktionswerte beider Punkte sind gleich groß. Das gilt für alle Punkte der Normalparabel. Wenn du sie an der y-Achse spiegelst bildest du sie auf sich selbst ab. Diese Eigenschaft der Normalparabel heißt Achsensymmetrie. Man sagt, die Normalparabel ist achsensymmetrisch zur y-Achse. Werden die positiven x-Werte größer, werden auch die zugehörigen y-Werte immer größer. Bei den negativen x-Werten ist es umgekehrt: Werden diese kleiner, werden die y-Werte größer. Fassen wir das noch einmal zusammen: Eine spezielle quadratische Funktion ist die Funktion 'f von x' ist gleich 'x Quadrat'. Mit Hilfe der Funktionsgleichung kannst du ihren Graphen ermitteln. Die ermittelten Wertepaare trägst du ins Koordinatensystem ein und verbindest sie mit einer gekrümmten Linie. Der Graph heißt Normalparabel. Er ist achsensymmetrisch zur y-Achse und besitzt nur nichtnegative Funktionswerte. Bei 0|0 liegt der Scheitelpunkt. Er ist gleichzeitig y-Achsenabschnitt und Tiefpunkt. Die Normalparabel ist aber erst der Anfang. Von ihr ausgehend wird es dir möglich sein, die große Welt der Parabeln zu erforschen.
f(x) = x² – Wertetabelle und Funktionsgraph: Die Normalparabel Übung
9.182
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.109
Lernvideos
37.100
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter
Wo findet man sofaheld Übungen zu diesem Thema ?
Denn ich bin derzeit in der 8.Klasse und ich kann leider keine Sofahled Übungen zu diesem Themenbereich finden 🤷🏼♀️
Das Thema wurde total gut erklärt!!!😁👍😊
Dankeschön...🙂
einfach und übersichtlich
das hat mir sehr geholfen, danke!
cool