Funktionsgraphen verschieben mit dem Parameterverfahren
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Funktionsgraphen verschieben mit dem Parameterverfahren
Verschieben von Funktionsgraphen – benötigtes Vorwissen
Für dieses Thema musst du wissen, was lineare und quadratische Funktionen sind. Zur Erinnerung:
Lineare Funktionsgleichungen sehen allgemein so aus:
Dabei ist die Steigung und der -Achsenabschnitt der Gerade, die den Funktionsgraphen der linearen Funktion darstellt.
Quadratische Funktionsgleichungen sehen allgemein so aus:
Dabei ist der Faktor für die Stauchung/Streckung und der -Achsenabschnitt der Parabel, die den Funktionsgraphen der quadratischen Funktion darstellt.
Weiterhin solltest du wissen, was eine Parallelverschiebung ist.
Wenn eine Figur parallel verschoben wird, wird jeder Punkt der Figur um einen bestimmten Wert in eine bestimmte Richtung verschoben. Die beiden Figuren sind deckungsgleich, also gleich groß und von der gleichen Form.
Verschieben von Funktionsgraphen – Möglichkeiten
Wird ein Funktionsgraph parallel verschoben, bleiben die Form und Steigung des Funktionsgraphen erhalten, er wird lediglich in -Richtung und/oder in -Richtung verschoben. Um einen Funktionsgraphen parallel in Richtung bestimmter Werte zu verschieben, gibt es zwei Möglichkeiten, die zugehörigen Funktionsgleichungen zu bestimmen.
Weg 1 – Parallelverschiebung einzelner Punkte
Achtung!
Dieser Weg ist lediglich beim Verschieben linearer Funktionsgraphen anwendbar:
- Zwei Punkte und der linearen Funktion finden
- Mithilfe der Verschiebungswerte die Bildpunkte und ermitteln
- Mit den Punkten und die neue Funktionsgleichung bestimmen
Schauen wir uns das anhand einer Beispielaufgabe an.
Die Funktion soll um Einheiten in -Richtung und um Einheiten in -Richtung verschoben werden.
Indem wir zwei beliebige -Werte in die Funktionsgleichung einsetzen, suchen wir uns zwei Punkte und , die auf dem Funktionsgraphen liegen:
Die beiden Bildpunkte und erhalten wir, indem wir die - und -Koordinaten der Punkte und mit den Verschiebungswerten verrechnen.
und
Mit diesen Bildpunkten können wir nun die neue Funktionsgleichung bestimmen. Für eine lineare Funktion ist es nämlich lediglich notwendig, zwei auf der Funktion liegende Punkte zu kennen. Die Steigung der neuen verschobenen Funktion ist aufgrund der Verschiebung zwar noch immer gleich (nämlich ), aber wir wollen hier trotzdem kurz wiederholen, wie man die Steigung einer Funktionsgleichung durch zwei gegebene Punkte bestimmt. Das macht man mit dem Differenzenquotienten. Zur kurzen Erinnerung:
Mit dem Differenzenquotienten wird die Steigung der Geraden zwischen zwei Punkten und bestimmt. Der Differenzenquotient wird so berechnet:
In diesem Fall wird also der Differenzenquotient mit und so berechnet:
Wir haben nun auch mit dem Differenzenquotienten gezeigt, dass die Steigung der Bildfunktion ebenfalls ist. Die Funktionsgleichung lautet demnach:
Den -Achsenabschnitt bestimmen wir nun noch, indem wir entweder oder in die Gleichung einsetzen und sie nach auflösen. Also so:
Das Gleiche funktioniert auch mit .
Also lautet die Funktionsgleichung der verschobenen Funktion:
Weg 2 – Parameterverfahren
Das Parameterverfahren geht nicht den Umweg über zwei Punkte, sondern wandelt die Funktionsgleichung direkt in eine verschobene Funktion um. Deswegen kann dieses Verfahren auch auf jede Funktionsgleichung angewendet werden:
- Verschiebung in -Richtung und Verschiebung in -Richtung bestimmen
- Die -Gleichung nach umformen und in die -Gleichung einsetzen
- Eventuell ausmultiplizieren und zusammenfassen
Parameterverfahren – lineare Funktion
Auch dies wollen wir an einem Beispiel durchführen. Wir nutzen der Einfachheit halber zunächst die lineare Funktionsgleichung und die Verschiebungswerte Einheiten in -Richtung und Einheiten in -Richtung erneut. ist eine alternative Bezeichnung für , also können wir auch schreiben. Damit bestimmen wir und so:
Nun formen wir die -Gleichung nach um:
Dies können wir nun in die -Gleichung für einsetzen.
Damit sind wir mithilfe des Parameterverfahrens ebenfalls zur verschobenen Funktionsgleichung gekommen.
Parameterverfahren – quadratische Funktion
Nun wollen wir dieses Verfahren noch an einer quadratischen Funktionsgleichung ausprobieren. Wir nehmen dafür die Funktionsgleichung .
Diese soll um den -Wert und -Wert verschoben werden. Damit erhalten wir folgende Gleichungen für und :
Wir haben erneut zunächst den Funktionsterm für und dann für eingesetzt, um anschließend zu vereinfachen und zusammenzufassen. Anschließend können wir noch die Variablen umbenennen. Damit lautet die verschobene Funktionsgleichung .
Sonderfall – Verschiebungswerte bestimmen
Es kann auch sein, dass du in einer Aufgabe nicht die Verschiebungswerte gegeben hast, sondern zwei Funktionsgleichungen und mit diesen die Verschiebung ermitteln sollst. Diesen umgekehrten Fall schauen wir uns an einem Beispiel genauer an.
Gegeben sind die Funktionsgleichungen und . Um welche Werte wurde verschoben?
Für die Berechnung schauen wir uns markante Punkte der beiden Funktionen an, die wir miteinander vergleichen können. Da es sich hier um quadratische Funktionen handelt, können wir z. B. die Scheitelpunkte betrachten. Um den Scheitelpunkt einer quadratischen Funktion zu bestimmen, gibt es mehrere Möglichkeiten. Die bekannteste davon ist die Umwandlung der Funktionsgleichung in die Scheitelpunktform. Dabei nutzen wir die quadratische Ergänzung, um die Funktionsgleichung in eine Form zu bringen, aus der wir den Scheitelpunkt einfach ablesen können.
Wir wollen nun mit der quadratischen Ergänzung die beiden Funktionen in ihre Scheitelpunktform bringen. Wir beginnen mit .
Damit können wir den Scheitelpunkt von ablesen. Dieser lautet . Als Nächstes wandeln wir um.
Also wissen wir nun, dass und ist. Indem wir nun jeweils die - und -Koordinaten miteinander verrechnen, können wir die Verschiebungswerte ermitteln. Also wurde genau um in -Richtung und in -Richtung verschoben.
Verschieben von Funktionsgraphen – Zusammenfassung
Sollen Funktionsgraphen verschoben werden, gibt es zwei Möglichkeiten, die neue Funktionsgleichung zu berechnen.
Bei der Verschiebung zweier Punkte werden sich zwei Punkte gesucht, die auf einer linearen Funktion liegen. Von diesen werden die Bildpunkte anhand der gegebenen Verschiebungswerte ermittelt und dann wird die neue Funktionsgleichung berechnet. Aber Achtung: Dieser Weg funktioniert nur bei linearen Funktionen.
Der zweite Weg funktioniert bei allen Funktionsgleichungen. Beim Parameterverfahren werden die zwei Gleichungen Verschiebung in -Richtung und Verschiebung in -Richtung aufgestellt und mit diesen die neue Funktionsgleichung berechnet.
Soll im Gegenteil berechnet werden, um welche - und -Werte eine Funktion verschoben wurde, schaut man sich markante Punkte, wie z. B. Nullstellen oder die Extremwerte der Funktionen, an und vergleicht deren Koordinaten miteinander.
Häufig gestellte Fragen zum Thema Verschieben von Funktionsgraphen
Funktionsgraphen verschieben mit dem Parameterverfahren Übung
-
Beschreibe, wie ein Funktionsgraph sich verändert, wenn er entlang eines Vektors verschoben wird.
-
Ermittle die Gleichung des verschobenen Graphen durch Parallelverschiebung einzelner Punkte.
-
Wende zur Bestimmung der Funktionsgleichung das Parameterverfahren an.
-
Prüfe, ob die Parabel durch Verschiebung hervorgegangen ist aus der Funktion .
-
Benenne die beiden Verfahren, mit denen die Funktionsgleichung eines verschobenen Graphen ermittelt werden kann.
-
Ermittle die Gleichung der verschobenen Parabel.
9.152
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.069
Lernvideos
37.109
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal