Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Satz von Rolle

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Satz Von Rolle Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 5.0 / 5 Bewertungen
Die Autor*innen
Avatar
Frank Steiger
Satz von Rolle
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Satz von Rolle

Hallo. Nimm dir ein Seil zur Hand. Halt die beiden Enden mit deinen Händen auf der gleichen Höhe vor deiner Brust hoch und lass das Seil baumeln. Welche Form nimmt das Seil an? Es hängt nach unten durch und es hat sicher einen tiefsten Punkt. Nur, was heißt das mathematisch? Gerade das, sagt der Satz von Rolle aus. Wenn du dir das Seil als Funktion in einem Koordinantensystem vorstellst, erfüllt es die Voraussetzungen für den Satz. Der Satz, beim Seil angewendet, besagt, dass irgendwo zwischen deinen Händen eine Stelle existieren muss, an welcher du eine waagerechte Tangente an die, durch das Seil beschriebene, Kurve legen kannst. Weiterhin zeige ich dir anschaulich an Beispielen, warum bei dem Satz zwei wichtige Voraussetzungen gelten müssen. Viel Spaß beim Schauen, wünscht dir Frank.

Transkript Satz von Rolle

Hallo! Mein Name ist Frank. In diesem Video werde ich den "Satz von Rolle" behandeln. Und um erstmal die Aussage des Satzes von Rolle zu veranschaulichen, habe ich ein Seil mitgebracht. Dieses Seil halte ich mal gespannt in meinen beiden Händen. Und Du siehst, der Verlauf dieses Seils ist eine konstante Funktion. Das heißt, an jedem Punkt zwischen meinen Händen, würde diese Funktion die Steigung 0 haben. Wenn ich nun das Seil etwas loslasse, fällt das so nach unten und Du kannst jetzt sehen, dieses Seil hat irgendwo hier in der Mitte einen tiefsten Punkt. Also ich schaue grade drauf. Und meine beiden Hände sind auf der gleichen Höhe. Wenn die beiden Hände mit einer Geraden verbunden werden, hat dieser Gerade die Steigung 0. Und durch Parallelverschiebung kannst Du diese Gerade soweit nach unten schieben, dass sie diese Kurve berührt. Und das heißt, es gibt eine Tangente an dieser Kurve mit der Steigung 0. Das ist die Aussage des Satzes von Rolle. Und das werde ich mir jetzt im Folgenden anschauen. Nachdem ich am Beispiel mit diesem Seil schon mal die Aussage vom Satz von Rolle gezeigt habe, werde ich jetzt anhand von Funktionen, die Du hier sehen kannst, die Aussage nochmal festmachen. Also ich beginne mit einer konstanten Funktion. Das war die Situation, als ich das Seil so stramm gehalten habe. Und es sind die Punkte P(a; f(a)), also der linke Punkt, und Q(b; f(b)), der rechte Punkt, markiert. Und ich habe ja vorhin schon gesagt, meine beiden Hände befinden sich auf der gleichen Höhe, das heißt: f(a) = f(b). Also ich betrachte das Intervall I = [a; b]. Und diese Bedingung, dass meine beiden Hände auf der gleichen Höhe sein sollen, lautet: Der Funktionswert am linken Intervallrand ist gleich dem Funktionswert am rechten Intervallrand. Und bei dieser konstanten Funktion siehst Du das, was ich vorhin schon am Seil gezeigt habe, an jeder Stelle zwischen diesen beiden Händen oder den beiden Punkten ist die Steigung der Funktion 0. Also eine waagerechte Tangente. Und dann siehst Du da die Funktion: f(x) = 1/2 * (ex + e-x). Das ist die sogenannte Kettenlinie. Auch da wieder die beiden Punkte P(a; f(a)), Q(b; f(b)) mit der Eigenschaft f(a) = f(b). Und wenn wir da diese Linie durchziehen, das was ich vorhin bei dem Seil auch schon gemacht habe, dann hast Du eine Sekante und diese Sekante hat die Steigung 0. Und durch Parallelverschiebung der Sekante kommst Du irgendwann zu einer Tangente. Und diese Tangente hat auch die Steigung 0. Und das ist die Aussage des Satzes von Rolle. Und das schreibe ich jetzt mal hier hin. Es existiert mindestens ein x0 aus dem Intervall I, so dass wir eine waagerechte Tangente haben. Das heißt die erste Ableitung an der Stelle x0 0 ist. Und Du kannst nun sehen, hier habe ich noch ein bisschen Platz gelassen. Warum ich diesen Platz gelassen habe, das wirst Du jetzt im Folgenden merken. Und weiter geht es. Also, wie ich vorhin schon gesagt habe, ich habe hier ein bisschen Platz gelassen, weil dieser Satz von Rolle nur unter gewissen Voraussetzungen gilt. Und dafür habe ich drei Beispiele vorbereitet, die Du hier links sehen kannst. Ich beginne mal mit dem ersten. Und wie Du hier sehen kannst, es gilt nach wie vor: f(a) = f(b). Allerdings hat diese Funktion auf dem Intervall I eine Sprungstelle. Und Du kannst erkennen, es gibt keine Stelle zwischen a und b, also auf dem Intervall I, mit waagerechter Tangente. Gut. Ich nehme mal das zweite Beispiel her. Und auch hier, diese Funktion hat jetzt keine Sprungstelle innerhalb des Intervalls, aber am linken Rand. Du siehst der Funktionswert an der linken Grenze ist als einzelner Punkt definiert. Wiederrum gilt: f(a) = f(b). Und trotzdem existiert keine solche Tangente.Und was haben diese beiden Beispiele gemeinsam? Beide Funktionen sind nicht stetig. Also bräuchte ich für den Satz von Rolle noch die Voraussetzung, dass f stetig ist auf dem abgeschlossenen Intervall [a;b].Auch das tue ich mal wieder weg und nehme das letzte Beispiel hier. Hier kannst Du eine Betragsfunktion sehen. Also so. Wiederrum gilt: f(a) = f(b) und diese Funktion ist auch stetig auf dem gesamten Intervall. Und trotzdem haben wir keine waagerechte Tangente. Warum ist das diesmal so? Wenn Du genau hinschaust, siehst Du: Die linksseitige Ableitung bei 0 ist -1. Die rechtsseitige Ableitung bei 0 ist +1. Das heißt die Funktion ist nicht differenzierbar an der Stelle 0. Und deswegen brauchen wir für den Satz von Rolle noch eine weitere Eigenschaft. Nämlich: f differenzierbar. Und diesmal reicht das offene Intervall (a,b).Und wenn wir das alles zusammen haben, kann ich zusammenfassend nochmal den Satz von Rolle wiederholen: Wir betrachten da Intervall [a;b]. Am linken und am rechten Intervallrand sollen die Funktionswerte übereinstimmen. Das ist das, was ich am Anfang mit den beiden Händen gemacht habe. Zusätzlich soll die Funktion stetig sein auf dem abgeschlossenen Intervall [a;b] und differenzierbar sein auf dem offenen Intervall (a,b). Und dann können wir feststellen, es existiert mindestens eine Stelle auf dem Intervall, so dass die erste Ableitung an dieser Stelle x0 grade 0 ist.Gut. Nun hoffe ich, dass Du alles gut verstehen konntest. Danke dir für deine Aufmerksamkeit und freue mich wie immer über Fragen und Anregungen. Bis zum nächsten Mal. Dein Frank.

2 Kommentare
  1. Hallo.
    Bei der Voraussetzung für die Differenzierbarkeit reicht das offene Intervall. Bei der Stetigkeit sind die Ränder nötig.
    Ich hoffe, das hilft Dir weiter.

    Von Frank Steiger, vor etwa 9 Jahren
  2. Vielen Dank, das war sehr schön anschaulich dargestellt und gut erklärt.
    Mir ist allerdings nicht ganz klar, warum bei der Vorbedingung, dass die Funktion differenzierbar ist (was okay ist) , von einem offenen Intervall (a,b) ausgegangen werden kann.

    Von Eemilelv, vor etwa 9 Jahren

Satz von Rolle Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Satz von Rolle kannst du es wiederholen und üben.
  • Gib die Voraussetzungen an die Funktion $f(x)$ und das Intervall $I=[a;b]$ sowie die Aussage des Satzes von Rolle an.

    Tipps

    Beachte, dass ...

    • zu dem Intervall $[a;b]$ die Intervallgrenzen dazugehören.
    • zu dem Intervall $(a;b)$ die Intervallgrenzen nicht dazugehören.

    Diese Funktion hat mehrere Stellen mit waagerechter Tangente.

    Wenn eine Funktion $f(x)$ nur auf dem Intervall $[a;b]$ definiert ist, kann die Ableitung an den Rändern unter Umständen nicht berechnet werden.

    Lösung

    Für den Satz von Rolle benötigt man zunächst einmal mehrere Voraussetzungen:

    1. Es muss $f(a)=f(b)$ gelten.
    2. Die Funktion $f(x)$ muss stetig auf $I=[a;b]$ sein.
    3. Für die Differenzierbarkeit genügt das offene Intervall $(a;b)$. Die Funktion muss also differenzierbar auf $(a;b)$ sein.
    Dann besagt der Satz von Rolle, dass es mindestens eine Stelle (es können auch mehrere sein) auf $I=[a;b]$ gibt, sodass an den Graphen an dieser Stelle mit $f'(x_0)=0$ eine waagerechte Tangente angelegt werden kann.

  • Ermittle, welche Bedingungen für den Satz von Rolle erfüllt sind und welche nicht.

    Tipps

    Schaue dir die Betragsfunktion an. Diese ist zwar stetig, allerdings nicht differenzierbar in $x_0=0$. Warum?

    Der linksseitige Grenzwert der 1. Ableitung ist $-1$ und der rechtsseitige $1$. Diese Grenzwerte stimmen nicht überein. Damit kann $f(x)$ in $x_0=0$ nicht differenzierbar sein.

    Stetigkeit bedeutet, dass du den Graphen einer Funktion zeichnen kannst, ohne den Stift absetzen und wieder neu aufsetzen zu müssen.

    Wenn eine Funktion an einer Stelle nicht stetig ist, dann ist sie dort sicher auch nicht differenzierbar.

    Bei einem abgeschlossenen Intervall $[a;b]$ sind die beiden Randpunkte $a$ und $b$ Teil des Intervalls.

    Bei einem offenen Intervall $(a;b)$ sind die beiden Randpunkte $a$ und $b$ nicht Teil des Intervalls.

    Lösung

    Bei allen drei Beispielen gilt $f(a)=f(b)$. Dies ist an den eingezeichneten Punkten zu sehen. Und trotzdem gilt für keine Funktion, dass eine Stelle $x_0$ zwischen $a$ und $b$ existiert, so dass $f'(x_0)=0$ ist. Warum ist das so?

    Bei dem oberen Graphen gibt es eine Sprungstelle zwischen $a$ und $b$. Die Funktion ist dann sicher nicht stetig auf ganz $(a;b)$ und damit auch nicht differenzierbar.

    Der mittlere Graph hat zwar keine Sprungstelle innerhalb des Intervalls, aber eine am Rand. Der Graph ist zwar auf dem offenen Intervall $(a;b)$ stetig, allerdings nicht auf dem abgeschlossenen $[a;b]$. Diese Funktion ist allerdings auf $(a;b)$ differenzierbar.

    Der untere Graph ist auf dem gesamten geschlossenen Intervall $[a;b]$ zwar stetig, allerdings nicht differenzierbar auf $(a;b)$. Die Funktion hat einen „Knick“. Das bedeutet: Links von dieser Stelle ist die Steigung negativ (konstant) und rechts positiv (konstant). Schließlich stimmen sicher der links- und rechtsseitige Grenzwert der Ableitungen nicht überein. Somit ist die Funktion an dieser Stelle nicht differenzierbar.

  • Entscheide, welche der Funktionen, die wir auf dem Intervall $I=[-2;2]$ betrachten, mehr als eine Stelle mit $f'(x_0)=0$ haben.

    Tipps

    Der Satz von Rolle besagt, dass unter den Voraussetzungen

    • $f(a)=f(b)$
    • $f(x)$ auf $[a;b]$ stetig und
    • f(x) auf $(a;b)$ differenzierbar
    mindestens eine Stelle existiert mit $f'(x_0)=0$.

    Da du weißt, dass $f(-2)=f(2)$ ist und weiterhin alle Funktionen stetig und differenzierbar sind, musst du noch die Gleichung $f'(x)=0$ lösen. Bilde also jeweils die Ableitung der Funktion.

    Beachte: Die Ableitung einer konstanten Funktion ist $0$.

    Lösung

    Schauen wir uns die Funktionen einmal genauer an:

    • $f(x)=5$ ist eine konstante Funktion. Das bedeutet, dass $f'(x)=0$ für alle $x$ ist. Hier gibt es sogar unendlich viele solche Stellen.
    • Für $f(x)=x^2$ ist $f'(x)=2x$. Somit führt $f'(x)=0$ zu $x_0=0$. Es gibt keine weiteren Nullstellen. Hier existiert also genau eine solche Stelle.
    • Die Ableitung der Funktion $f(x)=x^4$ ist gegeben durch $f'(x)=4x^3$. Auch die Gleichung $4x^3=0$ führt nur zu einer Lösung $x_0=0$.
    • $f(x)=2x^4-x^2$ hat die Ableitung $8x^3-2x$. Die Gleichung $8x^3-2x=0$ kann durch Ausklammern gelöst werden: $2x(4x^2-1)=0$. Entweder ist $2x=0$, also $x_0=0$. Oder es muss $4x^2-1=0$ gelten. Hier wird zunächst $1$ auf beiden Seiten der Gleichung addiert und dann durch $4$ dividiert zu $x^2=\frac14$. Zuletzt wird die Wurzel gezogen: $x_1=-0,5$ oder $x_2=0,5$. Alle drei Lösungen liegen in dem Intervall $I=[-2;2]$.
    • Es wird wieder zunächst die 1. Ableitung für $f(x)=x^4+x^2$ berechnet: $f'(x)=4x^3+2x$. Nun wird in der Gleichung $4x^3+2x=0$ wieder ausgeklammert $x(4x^2+2)=0$. Da $4x^2+2>0$ immer gilt, gibt es nur eine Lösung dieser Gleichung: $x_0=0$.
  • Verwende die Aussage des Satzes von Rolle für die Funktion $f(x)=2x^2+4x+6$.

    Tipps

    Ersetze in der Funktionsgleichung die Variable $x$ durch den jeweiligen Wert.

    Dies siehst du hier an dem Beispiel $x=2$.

    • Die erste Ableitung von $x^2$ ist $2x$.
    • Die Faktorregel: Die Ableitung von $k\cdot f(x)$ ist $k\cdot f'(x)$.

    Löse die (lineare) Gleichung $f'(x)=0$.

    Lösung

    Da die Stetigkeit und Differenzierbarkeit bereits vorgegeben sind, ist nur noch zu prüfen, ob die Funktionswerte an den Intervallgrenzen übereinstimmen. Zunächst untersuchen wir $f(-3)$:

    $\begin{align} f(-3) & =2\cdot (-3)^2+4\cdot (-3)+6\\ & =18-12+6\\ & =12 \end{align}$

    Dann betrachten wir noch $f(1)$:

    $\begin{align} f(1) & =2\cdot 1^2+4\cdot 1+6\\ & =2+4+6\\ & =12 \end{align}$

    Die Funktionsterme sind also gleich.

    Nun muss nur noch geprüft werden, ob (mindestens) ein $x_0$ in diesem Intervall existiert, für das $f'(x_0)=0$ ist.

    Die Ableitung von $f(x)$ ist $f'(x)=4x+4$. Damit kann die Gleichung $f'(x)=4x+4=0$ gelöst werden:

    • Zunächst wird auf beiden Seiten $4$ subtrahiert zu $4x=-4$.
    • Dann wird durch $4$ dividiert: $x=\frac{-4}4=-1$.
    Die gesuchte Stelle ist $x_0=-1$; sie liegt tatsächlich auch in dem Intervall $I=[-3;1]$.

  • Ergänze die Erklärung zu dem Satz von Rolle.

    Tipps

    Die erste Ableitung an einer Stelle $x_0$ steht für die Steigung einer Tangente $y=mx+b$.

    Eine Gerade, welche parallel zu der x-Achse verläuft, hat die Steigung $0$.

    Nimm dir ein Seil und halte es zwischen deinen Händen. Deine Hände sollen auf der gleichen Höhe sein.

    Spanne zuerst das Seil und lasse es dann locker. Die Hände müssen auf der gleichen Höhe bleiben.

    Dies veranschaulicht den Satz von Rolle.

    Lösung

    Der Satz von Rolle besagt: Wenn auf einem Intervall $I=[a;b]$ mit $f(a)=f(b)$ die Funktion $f$ stetig ist und differenzierbar auf $(a;b)$, dann gibt es mindestens eine Stelle $x_0$ auf diesem Intervall, sodass dort eine waagerechte Tangente vorliegt.

    Das bedeutet $f'(x_0)=0$.

    Dies kann man sich zum Beispiel klarmachen, wenn man in seinen Händen (auf gleicher Höhe, dies entspricht $f(a)=f(b)$) ein Seil hält, welches nach unten durchhängt. Es entsteht eine Kurve mit einer tiefsten Stelle. An dieser Stelle kann eine Tangente angelegt werden, welche waagerecht oder - mit anderen Worten - parallel zur x-Achse verläuft.

  • Prüfe die folgenden Aussagen für die beschriebene Funktion $f(x)$.

    Tipps

    Wenn eine Aussage nicht korrekt ist, genügt ein Gegenbeispiel, um dies auch zu beweisen.

    Verwende die Aussage des Satzes von Rolle:

    Wenn bei einer stetigen und differenzierbaren Funktion $f(a)=f(b)$ gilt, muss es zwischen $a$ und $b$ mindestens eine Stelle $x_0$ geben, für die $f'(x_0)=0$ gilt.

    Die zweite Ableitung ist die Ableitung der ersten Ableitung.

    An einer Wendestelle gilt $f''(x)=0$.

    Lösung

    Untersuchen wir die Aussagen auf ihren Wahrheitsgehalt:

    1. Wenn $f(x)$ zwei Nullstellen $x_1$ und $x_2$ besitzt, dann gilt $f(x_1)=f(x_2)$. Dies ist eine der Voraussetzungen des Satzes von Rolle. Es muss also mindestens eine Stelle $x_0$ mit $x_1\le x_0\le x_2$ geben, so dass $f'(x_0)=0$ ist. Das bedeutet, dass eine waagerechte Tangente vorliegt. Hier könnte ein Extremum vorliegen. Dass tatsächlich eines vorliegt, ist dadurch klar, dass unter der Voraussetzung, dass $f(x)$ nicht konstant ist, die Funktionswerte zwischen den Nullstellen entweder größer oder kleiner (oder gegebenenfalls auch beides!) als $0$ sein müssen. Daraus wiederum folgt, dass mindestens ein Extremum vorliegen muss. Diese Aussage ist richtig.
    2. Zwischen zwei Extremstellen muss allerdings keine Nullstelle liegen. Zum Beispiel hat die Sinusfunktion $f(x)=\sin(x)+3$ auf dem Intervall $I=[0;2\pi]$ zwei Extrema, einen Hochpunkt und einen Tiefpunkt. Allerdings hat die Funktion sicherlich keine Nullstelle, da $f(x)\ge 2$ für alle $x$ gilt. Diese Aussage ist falsch.
    3. Wendestellen sind Nullstellen der zweiten Ableitungen. Wenn die Funktion zwei Extremstellen ($x_1$ und $x_2$) besitzt, dann ist dort die 1. Ableitung jeweils $0$. Es gilt also $f'(x_1)=f'(x_2)=0$. Nach dem Satz von Rolle muss es somit mindestens eine Stelle $x_0$ geben mit $x_1\le x_0\le x_2$ für die gilt $f''(x_0)=0$ ist, da die 2. Ableitung die Ableitung der 1. Ableitung ist. Ebenso wie bei der Extremstelle zwischen zwei Nullstellen kann man argumentieren, dass auch tatsächlich eine Wendestelle vorliegt. Die entsprechende Aussage ist korrekt.
    4. Gegenbeispiel: Bei der Funktion $f(x)=x^2-4$ gibt es zwei Nullstellen $x_1=-2$ und $x_2=2$. Der Graph der Funktion ist eine Parabel. Diese hat keine Wendestellen. Somit ist diese Aussage falsch.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.993

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.718

Lernvideos

37.382

Übungen

33.710

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden