Ableitungen mit dem Differenzialquotienten – benötigtes Vorwissen
Für dieses Thema solltest du wissen, was der Differenzialquotient ist. Zur Erinnerung:
Der Differenzialquotient geht als Grenzwert aus dem Differenzenquotienten hervor und bestimmt die Steigung einer Funktion in einem bestimmten Punkt $x_0$. Er lautet:
$ \lim\limits_{x \to x_0}\dfrac{f(x)~–~f(x_0)}{x~–~x_0}$
Außerdem solltest du wissen, wie man den Differenzialquotienten mithilfe der h-Methode bestimmt.
Die h-Methode ist eine Möglichkeit, den Differenzialquotienten zu berechnen. Dazu addiert man einen Wert $h$, der mit dem Grenzwert gegen $0$ laufen soll.
$f'(x_0) = \lim\limits_{h \to 0} \dfrac{f(x_0 + h)~–~f(x_0)}{h}$
Im Folgenden sollen nun die Ableitungsfunktionen einiger Funktionstypen mithilfe des Differenzialquotienten bestimmt werden. Dies dient der Vermittlung der Funktionsweise von dem Differenzialquotienten und zur Verdeutlichung der Thematik. In der Praxis ist es wesentlich einfacher, Ableitungsfunktionen mit den entsprechenden Ableitungsregeln zu bestimmen.
Ableitung von Potenzfunktionen
Wir beginnen mit den Potenzfunktionen. Das schließt alle Funktionen der folgenden Form ein:
$f(x) = a \cdot x^n, a \neq 0, n \in \mathbb{N}_0$
Ableitung einer Konstanten
Für $n = 0$ erhalten wir die Funktionsgleichung $f(x) = a \cdot x^0 = a$. Diese lässt sich wie folgt mit der h-Methode ableiten:
Im ersten Umformungsschritt konnten wir für die Funktionswerte $f(x_0+h)$ und $f(x_0)$ jeweils einfach $a$ einsetzen, da $f(x)=a$ gilt. So erhalten wir $0$ für alle Werte von $a$. Dies kann man sich auch anhand des Graphen von $f(x) = a$ deutlich machen, der eine Gerade darstellt, die parallel zur $x$-Achse ist und die $y$-Achse bei $y = a$ schneidet.
Diese Gerade hat tatsächlich überall die Steigung $0$.
Ableitung von $f(x) = a \cdot x$
Für $n = 1$ erhalten wir die Funktionsgleichung $f(x) = a \cdot x1= a \cdot x$. Diese lässt sich wie folgt mit der h-Methode ableiten:
Im ersten Schritt setzen wir wieder die Funktionswerte oberhalb des Bruchstrichs ein, dann multiplizieren wir aus und anschließend wird nur noch vereinfacht. Der Ableitungsgraph der Funktion $f(x) = a \cdot x$ ist also eine Konstante, die die $y$-Achse bei $y = a$ schneidet.
Ableitung von $f(x) =a \cdot x^2$
Nun schauen wir uns noch den Fall $n = 2$ an, der repräsentativ für alle weiteren Werte für $n$ gilt. Wir erhalten die Funktionsgleichung $f(x) = a \cdot x^2$ und damit:
In Zeile drei haben wir die erste binomische Formel angewendet, dann vereinfacht, $h$ ausgeklammert und gekürzt. Gemäß der Potenzregel beim Ableiten ist also der Exponent der $x$-Potenz zum Faktor vor dem $x$ geworden und der Exponent hat sich um $1$ verringert.
Ableitung einer gebrochen rationalen Funktion
Auch gebrochen rationale Funktionen lassen sich mithilfe der h-Methode ableiten. Im Folgenden schauen wir uns das anhand der Funktion $f(x) = \frac{1}{x}$ an:
Um die Ableitung zu bestimmen, haben wir die Brüche in Zeile drei durch Erweitern gleichnamig gemacht, dann zusammengefasst und dann vereinfacht.
Ableitung einer Wurzelfunktion
Zuletzt wollen wir uns die Ableitung einer Wurzelfunktion mit dem Differenzialquotienten anschauen. Wir betrachten also die Funktion $f(x) = \sqrt{x}$.
Hier haben wir in Zeile drei den Bruch so erweitert, dass die dritte binomische Formel angewendet werden kann. Anschließend muss nur noch vereinfacht, gekürzt und der Grenzwert betrachtet werden.
Ableitungen mit dem Differenzialquotienten – Zusammenfassung
Mithilfe des Differenzialquotienten und der h-Methode können Funktionsgleichungen abgeleitet werden. Dazu verwendet man folgende Gleichung:
Der Differenzenquotient bestimmt die durchschnittliche Steigung zwischen zwei Punkten einer Funktion. Der Differenzialquotient dagegen bestimmt die momentane Steigung in einem Punkt einer Funktion.
Wir setzen eigene Cookies, Cookies von Drittanbietern und ähnliche Technologien auf unserer Website ein. Einige davon sind notwendig, um Ihnen eine sichere Nutzung unserer Plattform zu gewährleisten. Andere sind nicht unbedingt erforderlich, aber helfen uns z.B. dabei, die Nutzung unseres Angebots auszuwerten und zu verbessern. Es wird zwischen „Notwendige Cookies“, „Funktionalität & Komfort“, „Statistik & Analyse“ und „Marketing“ unterschieden. Marketing-Cookies werden auch für die Personalisierung von Anzeigen verwendet. Dabei werden auch Cookies von Google gesetzt (Datenschutzbestimmungen von Google). Weitere Informationen finden Sie in unserer Datenschutzerklärung und unseren Cookie Details.
Um in den Einsatz der nicht notwendigen Cookies einzuwilligen, klicken Sie auf „Alle Cookies akzeptieren“. Oder Sie treffen unter „Cookies individuell einstellen“ eine individuelle Auswahl. Dort finden Sie auch weitere Informationen zu den Zwecken sowie eingesetzten Drittanbietern. Soweit Sie diese zulassen, umfasst Ihre Einwilligung auch die Übermittlung von Daten in Drittländer, die kein mit der EU vergleichbares Datenschutzniveau aufweisen. Mit Klick auf „Alles ablehnen“ werden nur notwendige Cookies gesetzt. Sie können Ihre Auswahl jederzeit anpassen oder widerrufen.
Bist du unter 16 Jahre alt? Dann klicke bitte „Alles ablehnen“ oder hole die Erlaubnis deiner Erziehungsberechtigten ein.