Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Addition von Brüchen

Verstehe Brüche und lerne, sie zu addieren, indem du Pizzabeispiele betrachtest. Lerne, wie Zähler und Nenner arbeiten und wie man Brüche addiert, unabhängig davon, ob sie gleich- oder ungleichnamig sind. Möchtest du herausfinden, wie viele Pizzastücke insgesamt übrig bleiben? Interessiert? Dann findest du das und vieles mehr im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Addition von Brüchen

Was bedeutet der Zähler in einem Bruch?

1/5
Bereit für eine echte Prüfung?

Das Brüche Addieren Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 715 Bewertungen
Die Autor*innen
Avatar
Team Digital
Addition von Brüchen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Grundlagen zum Thema Addition von Brüchen

Brüche – Definition

Kennst du das?
Hast du schon einmal mit Freundinnen und Freunden Pizza bestellt und bemerkt, dass jeder unterschiedlich große Stücke wollte? Wenn jemand 38\frac{3}{8} der Pizza und jemand anderes 14\frac{1}{4} der Pizza möchte, kannst du durch Addition von Brüchen herausfinden, wie viel Pizza beide zusammen essen.

Stell dir vor, du schneidest zwei Pizzen in jeweils sechs gleich große Teile. Allerdings fallen dir beim Tragen die Pizzen herunter und ein paar der Stücke landen auf dem Boden. Von der ersten Pizza ist nur noch ein Stück essbar und von der zweiten sind es vier.

Den Anteil der noch essbaren Stücke kannst du in Brüchen aufschreiben:

Von der ersten Pizza ist noch ein Stu¨ck u¨brig: 16\text{Von der ersten Pizza ist noch ein Stück übrig: } \dfrac{1}{6}

Von der zweiten Pizza sind noch vier Stu¨cke u¨brig: 46\text{Von der zweiten Pizza sind noch vier Stücke übrig: } \dfrac{4}{6}

Über dem Bruchstrich steht der Zähler. Er gibt die Anzahl der Stücke an. Unter dem Bruchstrich steht der Nenner, der die Einteilung angibt. Nach ihm ist der Bruch außerdem benannt.

Hier sagt man also: ein Sechstel und vier Sechstel. Beide Brüche haben den gleichen Nenner. Man nennt sie deswegen auch gleichnamige Brüche.

Aber wie addiert man Brüche?

Brüche addieren

Möchtest du nun wissen, wie viele Stücke der Pizza insgesamt noch essbar sind, addierst du die beiden Brüche.

Gleichnamige Brüche addieren

Möchtest du gleichnamige Brüche addieren, fragst du dich, wie viele Stücke es insgesamt gibt.

Bei den zwei Pizzen fragst du dich also, wie viele Sechstel insgesamt noch essbar sind. Deswegen lassen wir den Nenner unverändert und addieren einfach die Zähler:

16+46=56\dfrac{1}{6} + \dfrac{4}{6} = \dfrac{5}{6}

Es sind also noch fünf Sechstel übrig.

Brüche addieren – Erklärung

Sind zwei Brüche gleichnamig, kannst du einfach ihre Zähler addieren. Der Nenner bleibt dabei unverändert.

Schauen wir uns an, wie es aussieht, wenn die Pizzen in jeweils sieben Teile geschnitten werden. Dieses Mal sind bei der ersten Pizza drei Stücke übrig und bei der zweiten zwei. Die Nenner sind wieder gleich. Deswegen müssen wir nur die Zähler addieren:

37+27=57\dfrac{3}{7} + \dfrac{2}{7} = \dfrac{5}{7}

Es sind also noch fünf Siebtel übrig.

Wenn du mehrere Brüche addieren willst, die denselben Nenner haben, kannst du genauso vorgehen.

Aber wie müssen wir vorgehen, wenn wir zwei Pizzen haben, die in unterschiedlich viele Stücke geschnitten wurden?

Ungleichnamige Brüche addieren

Wir stellen uns vor, wir haben zwei Pizzen und von jeder ist noch ein Stück übrig. Allerdings wurde eine Pizza in sechs gleich große Stücke geschnitten und die andere in drei. Dann haben wir die Brüche:

16\dfrac{1}{6} und 13\dfrac{1}{3}

Der Nenner ist bei beiden Brüchen unterschiedlich. Solche Brüche nennen wir ungleichnamig.

Fehleralarm
Ungleichnamige Brüche können wir nicht einfach so addieren, wir müssen erst eine gemeinsame Unterteilung für beide Brüche finden.

Wenn wir uns das Bild anschauen, können wir erkennen, dass wir die gedrittelte Pizza leicht in Sechstel unterteilen können – wir müssen nur alle Stücke halbieren.

Das können wir auch rechnerisch machen. Dazu müssen wir den Drittel-Bruch mit zwei erweitern. Das bedeutet, dass wir Zähler und Nenner mit zwei multiplizieren:

13=2123=26\dfrac{1}{3} = \dfrac{2 \cdot 1}{2 \cdot 3} = \dfrac{2}{6}

Jetzt haben wir wieder gleiche Nenner bei beiden Brüchen. Man nennt das auch „die Brüche auf einen gemeinsamen Hauptnenner bringen”. Die gleichnamigen Brüche können wir jetzt addieren, indem wir die Zähler addieren:

16+26=36=12\dfrac{1}{6} + \dfrac{2}{6} = \dfrac{3}{6} = \dfrac{1}{2}

Im letzten Schritt haben wir mit drei gekürzt. Insgesamt haben wir also eine halbe Pizza.

Gemischte und unechte Brüche addieren

Zum Schluss betrachten wir ein Beispiel, bei dem wir einen echten und einen unechten Bruch haben. An der Art und Weise, wie wir vorgehen, ändert das nichts. Dieses Mal haben wir drei Pizzen.

  • Eine, die in drei große Stücke geschnitten wurde. Davon sind noch zwei übrig.
  • Und zwei Pizzen, die in jeweils vier gleich große Stücke geschnitten wurden. Davon sind noch fünf übrig, also etwas mehr als eine ganze Pizza.

Wir wollen ausrechnen, wie viele Stücke insgesamt übrig geblieben sind. Wir müssen also Folgendes ausrechnen:

23+114=23+54=?\dfrac{2}{3} + 1 \dfrac{1}{4} = \dfrac{2}{3} + \dfrac{5}{4} = ?

Der gemischte Bruch 1141 \dfrac{1}{4} wurde zum unechten Bruch 54\dfrac{5}{4} umgeformt, da es sich so leichter weiter rechnen lässt.

Wir brauchen wieder einen gemeinsamen Nenner. Dazu vierteln wir die Drittel und dritteln die Viertel. Rechnerisch heißt das, dass wir die Drittel mit 44 und die Viertel mit 33 erweitern.

Dann können wir das Ergebnis wieder wie bei den gleichnamigen Brüchen ausrechnen. Das sieht dann so aus:

4243+3534=812+1512=2312\dfrac{4 \cdot 2}{4 \cdot 3} + \dfrac{3 \cdot 5}{3 \cdot 4} = \dfrac{8}{12} + \dfrac{15}{12} = \dfrac{23}{12}

Es sind also 2312\frac{23}{12} übrig. Das ist auch ein unechter Bruch, den du wieder in einen gemischten Bruch umformen kannst:

2312=11112\dfrac{23}{12} = 1 \dfrac{11}{12}

Echte und unechte Brüche addieren

Brüche mit ganzen Zahlen addieren

Ganze Zahlen lassen sich immer auch als Bruch darstellen, indem du im Nenner eine 11 schreibst.

6=616 = \dfrac{6}{1}

In dieser Form lassen sich ganze Zahlen mit Brüchen addieren.

Möchtest du eine ganze Zahl mit einem Bruch addieren, schreibst du diese zunächst als Bruch und bringst dann beide Brüche auf einen Nenner.

Hast du beispielsweise drei ganze Pizzen und eine halbe Pizza rechnest du wie folgt:

3+12=31+12=62+12=72=3123 + \dfrac{1}{2} = \dfrac{3}{1} + \dfrac{1}{2} = \dfrac{6}{2} + \dfrac{1}{2} = \dfrac{7}{2} = 3 \dfrac{1}{2}

Teste dein Wissen zum Thema Brüche Addieren!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Brüche addieren – Aufgaben

An den folgenden Aufgaben kannst du die Addition von Brüchen üben.

Ausblick – das lernst du nach Addition von Brüchen

Baue dein Verständnis weiter aus und beschäftige dich danach mit der Subtraktion von Brüchen! Oder vertiefe dein Wissen mit den Themen Erweitern und Kürzen von Brüchen und Dezimalbrüche.

Wenn du das Gelernte lieber sofort anwenden möchtest, hilft dir neben den interaktiven Übungen auch der Übungstext zur Addition von Brüchen mit passgenauen Aufgaben.

Brüche addieren – Zusammenfassung

  • Um Brüche zu addieren, müssen diese gleichnamig gemacht werden.
  • Auch ungleichnamige, gemischte oder unechte Brüche können addiert werden. Vorher muss allerdings umgeformt und erweitert oder gekürzt werden.
  • Ganze Zahlen können zu Brüchen umgeformt und so mit anderen Brüchen addiert werden.
  • Für die Addition von Brüchen gelten das Assoziativ- und das Kommutativgesetz.

Häufig gestellte Fragen zum Thema Brüche addieren

Transkript Addition von Brüchen

Aufgepasst: Luigi ist mal wieder schwer beladen unterwegs! Es besteht eindeutig Bruchgefahr! Mamma Mia! Die schöne Pizza! Das kann man wohl nicht mehr essen, aber wie viele Stücke sind noch in Ordnung? Um das herauszufinden, beschäftigen wir uns mit der Addition von Brüchen. Diese beiden Pizzen waren in jeweils 6 Teile geschnitten. Von der hier ist nur noch ein Stück in Ordnung und von der anderen noch vier Stücke. Über dem Bruchstrich im sogenannten Zähler steht immer die Anzahl der Stücke. Und unter dem Bruchstrich im Nenner befindet sich die Einteilung, nach welcher der Bruch benannt wird. Bei der Einteilung in jeweils 6 Stücke erhältst du zum Beispiel die Brüche ein Sechstel und vier Sechstel. Brüche mit gleichem Nenner werden gleichnamige Brüche genannt. Möchtest du gleichnamige Brüche, hier die Sechstel, addieren, dann fragst du dich: Wie viele Sechstel habe ich insgesamt? Den Nenner, also die Einteilung, übernimmst du daher unverändert und rechnest nur die Anzahlen, also die Zähler, zusammen. Eins und vier sind fünf, somit haben wir fünf Sechstel. Mach dich bereit für ein weiteres Beispiel! Hier geben die Nenner Siebtel an und zwar bei beiden Brüchen. Also sind sie wieder gleichnamig. Du behältst den Nenner bei, addierst die Zähler und erhältst das Ergebnis fünf Siebtel. Aber wie gehst du vor, wenn du Brüche mit verschiedenen Nennern addieren willst? Sagen wir mal, eine Pizza wurde in sechs Stücke eingeteilt und die andere in drei. Das sind dann ungleichnamige Brüche. Vor dem Addieren musst du erst eine gemeinsame Unterteilung für beide Brüche finden. Schau mal: In der Drittel-Unterteilung stecken auch Sechstek drin – dafür müssen wir jedes Stück halbieren. Die Anzahl der Stücke verdoppelt sich dabei. Super, jetzt hast du aus einem Drittel zwei Sechstel gemacht. Und wie geht das rechnerisch? Dafür kannst du den Bruch mit zwei erweitern – das heißt, den Zähler und den Nenner mit zwei multiplizieren. So erhältst du zwei Sechstel. Du hast nun gleichnamige Brüche, man sagt auch: Du hast die Brüche auf einen gemeinsamen Hauptnenner gebracht. Gleichnamige Brüche kannst du wie in den vorherigen Beispielen addieren. Du übernimmst den Nenner und zählst die Zähler zusammen. Daraus werden drei Sechstel. Diese drei Sechstel kannst du noch kürzen, indem du aus drei Stücken eines machst. Dem entspricht das Kürzen mit drei und du erhältst das Ergebnis ein Halb. Sieh dir nun mal diese beiden Brüche an: Sie haben ganz unterschiedliche Nenner. Hast du eine Idee, wie du sie auf einen gemeinsamen Nenner bringen kannst? Hier sind Fünftel und hier Halbe. Jetzt werden wir die Fünftel halbieren und zählen sechs Zehntel. Außerdem müssen wir jede Hälfte fünfteln, denn dann haben wir auch diese Pizza in Zehntel zerlegt. Rechnerisch erweiterst du die drei Fünftel' mit dem Nenner des rechten Bruchs – also mit zwei. Und den Bruch ein Halb erweiterst du mit dem ursprünglichen Nenner des linken Bruchs – mit fünf. So erhältst du sechs Zehntel und fünf Zehntel. Nun sind beide Brüche gleichnamig und du kannst sie wie gewohnt addieren. Also: Nenner übernehmen und Zähler addieren – das sind elf Zehntel. Fällt dir beim Ergebnis etwas auf? Elf Zehntel sind mehr als ein Ganzes! Solche Brüche werden unecht genannt. Die Brüche sechs Zehntel und fünf Zehntel sind dagegen echt. Denn sie sind echte Anteile eines Ganzen. Zum Schluss wagen wir uns noch an ein schwieriges Beispiel. Hier haben wir zwei Drittel, also einen echten Bruch und fünf Viertel, einen unechten Bruch. Weil die Brüche ungleichnamig sind, benötigen wir vor dem Addieren wieder einen gemeinsamen Nenner. Den erhalten wir über eine gemeinsame Einteilung. Lass uns die Drittel dafür jeweils vierteln und die Viertel jeweils dritteln. Rechnerisch erreichen wir das wieder, indem wir beide Brüche mit dem Nenner des jeweils anderen Bruchs erweitern. Den Bruch erweitern wir also mit vier und den anderen mit drei. So erhalten wir acht Zwölftel und fünfzehn Zwölftel. Jetzt haben wir einen gemeinsamen Hauptnenner, also gleichnamige Brüche. Beim Addieren übernehmen wir den Nenner wie gewohnt und addieren nur die Zähler. So erhalten wir acht und 15 Zwölftel, also 23 Zwölftel. Das ist eindeutig ein unechter Bruch. Fassen wir zusammen. Beim Addieren von ungleichnamigen Brüchen musst du zuerst den Hauptnenner bestimmen, indem du die Brüche sinnvoll erweiterst. Die erhaltenen gleichnamigen Brüche addierst du, indem du nur die Zähler addierst und den Nenner übernimmst. Und Luigi? Schade um die leckere Pizza. Wirklich schade! Aber un momento, da gab es doch mal diese Zehn-Sekunden-Regel. Oh oh – jetzt besteht Bruch-, ...äääh... BRECH-Gefahr...!

55 Kommentare
  1. Pls mehr solche videos

    Von Zeno, vor 4 Monaten
  2. Bitte macht mehr solcher Videos

    Von Lilou, vor 7 Monaten
  3. 🙋‍♀️
    Und das war der einzige Weg 0️⃣🇧🇼🕳️🪙

    Von Tim, vor etwa einem Jahr
  4. Was machen Sachen🕳️💎

    Von Tim, vor etwa einem Jahr
  5. macht mehr solcher viedeos

    :)

    Von Bastian , vor etwa einem Jahr
Mehr Kommentare

Addition von Brüchen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Addition von Brüchen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.213

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.121

Lernvideos

38.596

Übungen

33.424

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden