Division von Potenzen – Einführung
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Division von Potenzen – Einführung
Nach dem Schauen dieses Videos wirst du in der Lage sein, die Division von Potenzen durchzuführen.
Zunächst lernst du das Gesetz zur Division von Potenzen kennen. Anschließend lernst du, wie du die Bruchrechnung bei der Division von Potenzen verwenden kannst. Abschließend lernst du, wie du auch kompliziertere Ausdrucke mithilfe der Division von Potenzen vereinfachen kannst.
Lerne etwas über die Division von Potenzen, indem du die Briefmarkensammlungen der beiden Freunde Morton und Manfred vergleichst.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Potenzen, Exponent, Basis, Bruch, Vereinfachen und Division von Potenzen.
Bevor du dieses Video schaust, solltest du bereits wissen, was eine Potenz ist und wie du mit Brüchen rechnest.
Transkript Division von Potenzen – Einführung
Endlich Samstagabend. Morten wartet im Keller seiner Mutti auf seinen Freund und Rivalen Manfred. Da ist er ja schon. Zeit, ein für alle Mal festzustellen, wer der Meister ist in der königlichen, altehrwürdigen Disziplin des Briefmarkensammelns. Wie vergleicht man eine Briefmarkensammlung? Der Sammler mit den wertvollsten Briefmarken gewinnt. Zuerst sortieren die beiden ihre Sammlungen dann entfernen sie gleiche Briefmarken. Gleiche Briefmarken zu sortieren und zu entfernen ähnelt einem mathematischen Gesetz, das wir nutzen können, wenn wir uns mit der Division von Potenzen beschäftigen. Schauen wir uns mal an, wie sie das mit ihren Briefmarkensammlungen machen. Jede Axolotl-Briefmarke wird durch den Buchstaben a repräsentiert. Für Barsch-Briefmarken nutzen wir den Buchstaben b. Und für Clownfisch-Briefmarken den Buchstaben c. Siehst du, wie sich gleiche Variablen kürzen lassen? Beim Gesetz der Division von Potenzen bleibt die Basis gleich. Dann subtrahieren wir einfach vom Exponenten des Zählers den Exponenten des Nenners. Nicht vergessen, das klappt nur, wenn die Basis gleich ist. Basis nennt man die Zahl oder die Variable, die mit sich selbst multipliziert wird. Der Exponent ist die kleine Zahl oder Variable oben rechts, die uns sagt, wie oft die Basis mit sich selbst multipliziert wird. Jede Potenz mit dem Exponenten 1 ist gleich ihrer Basis. Schauen wir uns folgende Aufgabe an. Wie bei den Briefmarken können wir gleiche Variablen kürzen. Der vereinfachte Ausdruck ist gleich a. Vereinfachen wir den Ausdruck nochmal, mit dem Gesetz der Division von Potenzen. Bei gleicher Basis a können wir vom Exponenten des Zählers den Exponenten des Nenners subtrahieren. Wir erhalten also: a hoch 2 minus 1. Das ist gleich a hoch 1 oder einfach a. Vereinfachen wir noch einen Ausdruck mit dem Gesetz der Division von Potenzen. Zuerst schreiben wir den Ausdruck in Form eines Bruchs. Nicht vergessen, der Bruchstrich ist ein mathematisches Zeichen, das ebenfalls eine Division anzeigt. Um die Rechnung zu vereinfachen, sortieren wir die Gleichung, sodass gleichartige Ausdrücke zusammenstehen. Bei gleicher Basis können wir nun vom Exponenten des Zählers den Exponenten des Nenners subtrahieren. Und noch eine Aufgabe. Oh, das sieht aber kompliziert aus. Ach was, das bekommen wir hin! Immer schön die mathematischen Gesetze benutzen. Wenn wir durch einen Bruch teilen, multiplizieren wir mit dessen Kehrwert. Um den Kehrwert zu finden, musst du bloß den Zähler und den Nenner vertauschen. Dann multiplizierst du zuerst die beiden Zähler und dann die beiden Nenner. Dann zerlegst du Zähler und Nenner in gleichartige Brüche. Koeffizienten zu Koeffizienten. x zu x. y zu y. Und zuletzt wendest du das Gesetz der Division von Potenzen an. Lass uns noch rasch zusammenfassen. Das Potenzgesetz der Division von Potenzen mit gleicher Basis lautet: a hoch m durch a hoch n ist gleich a hoch 'm minus n'. Wenn du also zwei Potenzen mit gleicher Basis dividierst, entspricht das einer Potenz mit dem Exponenten "Zählerexponent minus Nennerexponent". Dabei darf übrigens die Basis niemals gleich 0 sein – sonst würdest du ja durch 0 teilen, und das ist verboten! Zurück zu unseren beiden Briefmarkenwettkämpfern. Der Wettkampf bleibt bis zur letzten Minute spannend, aber Morten hat noch ein Ass im Ärmel. Er holt seine wertvollste Briefmarke hervor. Den Roten Hummer. Oh nein!
Division von Potenzen – Einführung Übung
-
Beschreibe die Division von Potenzen.
TippsHätte Morten fünf Axolotl-Briefmarken, so könnte er sie durch die Potenz $a^5$ repräsentieren. $5$ ist hierbei der Exponent.
Die Differenz der Briefmarkenzahl entspricht dem Exponenten, der bei der Division der Terme von Manfreds und Mortens Sammlung auftritt.
Hat Morten eine Axolotl-Briefmarke und Manfred nicht, so ergibt sich der Quotient $\frac{1}{a}$. Hat umgekehrt Manfred eine Axolotl-Briefmarke, aber Morten nicht, so ist der Quotient $\frac{a}{1}$.
LösungMorten und Manfred vergleichen ihre Briefmarkensammlungen mithilfe von Potenzen. Dazu repräsentieren sie ihre Briefmarkensammlungen als Produkt aller einzelnen Briefmarken-Terme. Briefmarken gleichen Typs werden dabei als Potenzen dargestellt. Die Basis $a$ steht für Axolotl-Briefmarken, $b$ für Barsch-Briefmarken und $c$ für Clownfisch-Briefmarken. Der Exponent einer Potenz repräsentiert dann die Anzahl der Briefmarken des durch die Basis repräsentierten Typs.
Für seine drei Axolotl-Briefmarken schreibt Manfred also den Term $a^3$, denn $a$ steht für Axolotl, und der Exponent $3$ in $a^3$ repräsentiert die Anzahl. Für seine beiden Barsch-Briefmarken schreibt Manfred $b^2$ und für die vier Clownfisch-Briefmarken $c^4$.
Um nun das Verhältnis dieser Terme zu den Termen $a^3$ und $b$ und $c^5$ aus Mortens Sammlung zu bestimmen, bilden die Sammler den Quotienten aus dem Produkt der Potenzen:
$\frac{a^3 \cdot b^2 \cdot c^4}{a^3 \cdot b \cdot c^5}$
Um den Ausdruck zu vereinfachen, fassen sie nun die Potenzen mit gleicher Basis zusammen:
$\frac{a^3}{a^3} \cdot \frac{b^2}{b} \cdot \frac{c^4}{c^5}$
Das Potenzgesetz hilft dabei, diesen Term zu vereinfachen. Es besagt nämlich: Die Division von Potenzen gleicher Basis entspricht der Subtraktion ihrer Exponenten. Als Formel bedeutet das:
$\frac{a^m}{a^n} = a^{m-n}$
Nun können Manfred und Morten den obigen Term vereinfachen und erhalten:
$\frac{a^3}{a^3} \cdot \frac{b^2}{b} \cdot \frac{c^4}{c^5} = a^0 \cdot b^1 \cdot c^{-1} = \frac{b}{c}$
Das Ergebnis bedeutet: Morten hat einen Clownfisch mehr als Manfred, denn $\frac{c^4}{c^5} = c^{-1}$ und die Terme, immer Nenner, repräsentieren Mortens Briefmarken. Manfred dagegen ist Morten bei den Barschen um eine Briefmarke voraus, denn $\frac{b^2}{b} = b^1$. Bei den Axolotls herrscht Gleichstand:
$\frac{a^3}{a^3} = a^0$.
-
Bestimme die Potenzen.
TippsDie Potenz $a^3$ bedeutet: $a$ wird dreimal mit sich selbst multipliziert, d. h. $a^3 = a \cdot a \cdot a$.
Bei einem Ausdruck der Form $\frac{a^3 \cdot b^4}{a^2 \cdot b^3}$ kannst Du die Potenzen im Zähler und Nenner ausschreiben und dann Terme kürzen.
Der Quotient von Potenzen derselben Basis ist wieder eine Potenz zu dieser Basis. Der Exponent des Quotienten ist die Differenz der Exponenten von Zähler und Nenner.
LösungDas Potenzgesetz besagt: Potenzen gleicher Basis multiplizierst Du, indem Du die Exponenten addierst. Analog ist die Division von Potenzen zur gleichen Basis wieder eine Potenz zu dieser Basis. Der Exponent des Quotienten ist die Differenz der Exponenten von Zähler und Nenner. Als Formel kannst Du das so aufschreiben:
$\frac{a^m}{a^n} = a^{(m-n)}$
Mit dieser Vorüberlegung kannst Du die Gleichungen überprüfen.
Folgende Gleichungen sind richtig:
- $\frac{b^2 \cdot c^4}{b \cdot c^5} = \frac{b}{c}$, denn für die Exponten von $b$ gilt: $2-1 = 1$, und für die Exponenten von $c$ rechnest Du: $4-5 = -1$. Daher ist $\frac{b^2 \cdot c^4}{b \cdot c^5} = b^1 \cdot c^{-1} = \frac{b}{c}$.
- $\frac{27 \cdot a^2 \cdot b^3}{9 \cdot a \cdot b^2} = 3 \cdot a \cdot b$. Hier rechnest Du für die Koeffizienten: $\frac{27}{9} = 3$, für die Exponenten von $a$ ergibt sich $2-1 = 1$, und bei $b$ lautet die Exponenten-Rechnung $3 -2 =1$. Der Quotient ist demnach $3 \cdot a \cdot b$.
- $\frac{18 \cdot x^5 \cdot y^3}{6 \cdot x^3 \cdot y^2} = 3 \cdot y \cdot x^2$. Für die Koeffizienten rechnest Du: $\frac{18}{6} = 3$. Für die Exponenten von $x$ findest Du $5-3 = 2$, und die Rechnung für die Exponenten von $y$ lautet: $3-2=1$.
- $\frac{a^3 \cdot b^2}{a^3} = (ab)^6$. Auf der linken Seite kannst Du $a^3$ kürzen, daher ist $\frac{a^3 \cdot b^2}{a^3} = b^2$. Für die rechte Seite rechnest Du $(ab)^6 = a^6 \cdot b^6 \neq b^2$.
- $\frac{a^3 \cdot b^2}{a^3 \cdot b^1} = \frac{a \cdot b}{b}$. Links kannst Du $a^3$ kürzen, rechts $b$. So rechnest Du dann: $\frac{a^3 \cdot b^2}{a^3 \cdot b^1} = \frac{b^2}{b^1} = b^{(2-1)} \neq a = \frac{a \cdot b}{b}$.
- $\frac{x^5 \cdot y^3}{x^3 \cdot y^2} = y^2 \cdot x$. Auf der linken Seite lautet die korrekte Rechnung: $\frac{x^5 \cdot y^3}{x^3 \cdot y^2} = x^{(5-3)} \cdot y^{(3-2)} = x^2 \cdot y \neq y^2 \cdot x$.
-
Erschließe die Potenzen.
TippsVereinfache die Brüche mithilfe des Potenzgesetzes oder durch Kürzen.
Den Term $\frac{x^1 \cdot y^2 \cdot z^3 \cdot w^4}{x^7 \cdot y^6 \cdot z^5 \cdot w^4}$ kannst Du mit dem Potenzgesetz vereinfachen zu:
$\frac{1}{x^6 \cdot y^4 \cdot z^2} = x^{-6} \cdot y^4 \cdot z^2 \cdot w^0$
LösungDu kannst die Terme vereinfachen, indem Du die Potenzen ausmultiplizierst und dann kürzt. Alternativ kannst Du auch das Potenzgesetz zur Vereinfachung verwenden. Hast Du alle möglichen Potenzen gekürzt, so kannst Du das Ergebnis als Produkt von Potenzen darstellen, indem Du den Nenner als negative Potenz aufschreibst.
Du erhältst dann folgende Terme:
- $\frac{x^1 \cdot y^3 \cdot z^2 \cdot w^2}{x^0 \cdot y^1 \cdot z^3 \cdot w^2} = \frac{x \cdot y^2}{z} = x^1 \cdot y^2 \cdot z^{-1} \cdot w^0$
- $\frac{x^2 \cdot y^3 \cdot z^6 \cdot w^3}{x^2 \cdot y^2 \cdot z^5 \cdot w^1} = \frac{y \cdot z \cdot w^2}{1} = x^0 \cdot y^1 \cdot z^1 \cdot w^2$
- $\frac{x^4 \cdot y^3 \cdot z^7 \cdot w^4}{x^5 \cdot y^4 \cdot z^5 \cdot w^1} = \frac{z^2 \cdot w^3}{x \cdot y} = x^{-1} \cdot y^{-1} \cdot z^2 \cdot w^3$
- $\frac{x^2 \cdot y^2 \cdot z^1 \cdot w^4}{x^0 \cdot y^2 \cdot z^3 \cdot w^5} = \frac{x^2}{z^2 \cdot w} = x^2 \cdot y^0 \cdot z^{-2} \cdot w^{-1}$
-
Vergleiche die Potenzen.
TippsSchreibe die Potenzen auf der linken und rechten Seite aus und kürze, um eine möglichst einfache Form des Bruches zu finden.
Der Quotient aus Potenzen derselben Basis ist wieder eine Potenz dieser Basis. Der Exponent des Quotienten ist die Differenz der Exponenten von Zähler und Nenner.
$\frac{x^5 \cdot z^2}{x^2 \cdot y \cdot z^3} = \frac{x^3}{y \cdot z}$
und
$\frac{x^3 \cdot z}{y \cdot z^2} = \frac{x^3}{y \cdot z}$
LösungUm die Terme zu Gleichungen zu verbinden, kannst Du jeweils die linke und rechte Seite auf die einfachste mögliche Form bringen, indem Du die Potenzen ausschreibst und kürzt. Statt zu kürzen, kannst Du auch das Potenzgesetz
$\frac{a^m}{a^n} = a^{(m-n)}$
verwenden, um die Terme zu vereinfachen. Damit findest Du folgende Gleichungen (der mittlere Term ist jeweils der gekürzte Bruch):
- $\frac{x^3 \cdot y^2 \cdot z}{x^2 \cdot y^3 \cdot z} = \frac{x}{y} = \frac{x^2}{y \cdot x}$
- $\frac{x^2 \cdot y^2 \cdot z^2}{x^3 \cdot y^3 \cdot z} = \frac{z}{x \cdot y} = \frac{z^2 \cdot x}{x^2 \cdot y \cdot z}$
- $\frac{x^3 \cdot y^2 \cdot z^2}{x^3 \cdot y^3 \cdot z} = \frac{z}{y} = \frac{z^3}{y \cdot z^2}$
- $\frac{x \cdot y \cdot z}{x^2 \cdot y \cdot z^3} = \frac{1}{x \cdot z^2} = \frac{y}{x \cdot y \cdot z^2}$
-
Ergänze das Potenzgesetz.
TippsIn dem Ausdruck $5^3$ ist die größere Zahl die Basis.
Um Potenzen auszurechnen, kannst Du sie ausmultiplizieren.
Das Potenzgesetz besagt: $a^m \cdot a^n = a^{(m+n)}$.
LösungDie Potenzen einer Zahl $a$ entstehen, indem Du $a$ mit sich selbst multiplizierst: $a^2 = a \cdot a$ und $a^3 = a\cdot a \cdot a$ usw. Die Anzahl der Faktoren bildet den Exponenten der Potenz: In $a^n$ wird $a$ also $n$-mal mit sich selbst multipliziert. Die Basis einer Potenz $a^n$ ist die Zahl $a$, die mit sich selbst multipliziert wird.
Das Potenzgesetz
$a^m \cdot a^n = a^{m+n}$
kannst Du auch benutzen, um Potenzen zu dividieren. Dazu musst Du Dir klarmachen, dass eine Potenz $a^m$ im Nenner der Multiplikation mit $a^{-m}$ bedeutet. Für die Division von Potenzen findest Du dann das Potenzgesetz:
$\frac{a^m}{a^n} = a^m \cdot a^{-n} = a^{(m+(-n))} = a^{(m-n)}$.
Konkret bedeutet das:
$\frac{a^2}{a} = \frac{a^2}{a^1} = a^{(2-1)} = a^1 = a$.
-
Analysiere die Rechenregeln.
TippsÜbersetze die Aussagen in Formeln mit Variablen oder Zahlen, um sie zu überprüfen.
Es gilt:
$a^2 \cdot b^2 = (a \cdot b)^2$
Die binomische Formel lautet:
$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$
LösungDu kannst die Aussagen in Formeln übersetzen. An den Formeln kannst Du eventuell leichter erkennen, welche Aussagen richtig sind.
Folgende Regeln sind richtig:
- „Das Produkt von Potenzen mit Exponent $n$ ist die $n$-te Potenz des Produkts der Basen.“ Die passende Formel lautet $a^n \cdot b^n = (a \cdot b)^n$.
- „Eine Potenz mit einer Summe im Exponenten ist dasselbe wie das Produkt der Potenzen mit den Summanden als Exponenten.“ Als Formel kannst Du die Regel so schreiben: $a^{m+n} = a^m \cdot a^n$.
- „Das Potenzgesetz bestimmt die Multiplikation oder Division von Potenzen gleicher Exponenten.“ Stattdessen bestimmt das Potenzgesetz die Multiplikation von Potenzen mit gleicher Basis.
- „In einem Quotient von Potenzen kann man die Exponenten kürzen.“ Terme kürzen kannst Du aus dem Quotienten erst, nachdem Du die Potenzen ausmultipliziert hast.
- „In einem Quotient von Potenzen kann man die Basen kürzen.“ Das Kürzen eines Bruchs bedeutet, dass Du gleiche Terme im Zähler und Nenner streichst. Um aus Potenzen kürzen zu können, kannst Du z. B. die Potenzen ausmultiplizieren. Tritt im Zähler und Nenner dieselbe Potenz auf, so kannst Du sie auch direkt kürzen, ohne vorher auszumultiplizieren. In diesem Fall streichst Du beim Kürzen die ganze Potenz weg, nicht nur die Basis.
- „Eine Summe von Potenzen ist dasselbe wie das Produkt der Exponenten.“ Eine Summe von Potenzen kannst Du meistens nicht umformen. Nicht einmal dann, wenn die Basen oder die Exponenten gleich sind. Insbesondere kannst Du eine Summe von Potenzen auch nicht durch einen Term ersetzen, der nur aus dem Produkt der Exponenten besteht und die Basen gar nicht enthält.
- „Die Potenz einer Summe ist dasselbe wie die Summe der Potenzen der einzelnen Summanden.“ Die binomische Formel bestimmt z. B., wie Du die zweite Potenz einer Summe ausrechnest: $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$. Die Potenz der Summe enthält nicht nur die Summe der Potenzen $a^2 + b^2$, sondern auch den gemischten Term $2 \cdot a \cdot b$.
8.868
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.857
Lernvideos
37.640
Übungen
33.764
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
Das Video ist korreckt
Das Video ist sehr lustig und verständlich erklärt. Ich habe es danach gleich verstanden und hatte in der nächsten Prüfung eine 2
moin
sehr verständlich erklärt :)
hihi haha