Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen

Strecken und Winkel mit Zirkel und Lineal übertragen: Erfahre, wie du Längen und Winkel ohne Lineal überträgst. Mit dem Zirkel lassen sich Strecken einfach kopieren, und mit einem einfachen Trick können auch Winkel übertragen werden. Neugierig geworden? All das und noch mehr erwartet dich im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen

Wie überträgt man eine Strecke mit dem Zirkel?

1/2
Bereit für eine echte Prüfung?

Das Winkel Mit Zirkel Übertragen, Strecken Mit Lineal Übertragen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.8 / 342 Bewertungen
Die Autor*innen
Avatar
Team Digital
Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen
lernst du in der 5. Klasse - 6. Klasse

Grundlagen zum Thema Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen

Konstruktionen mit Zirkel und Lineal

In der Geometrie, einem Teilgebiet der Mathematik, sind Zirkel, Lineal und Geodreieck deine wichtigsten Werkzeuge zum Konstruieren von geometrischen Figuren. Viele Grundkonstruktionen kommen sogar ohne das Geodreieck aus. So zum Beispiel das Übertragen von Winkeln und Strecken mit Zirkel und Lineal, das hier einfach erklärt wird.

Wie kann man eine Strecke mit einem Lineal oder mit einem Zirkel übertragen?

Strecken kannst du durch Abmessen mit dem Lineal übertragen. Dafür misst du die Originalstrecke und merkst dir, was du gemessen hast. Diese Länge trägst du nun auf einer beliebigen Geraden ab.

Du kannst eine Strecke aber auch ganz ohne Lineal und ohne Messen der Länge übertragen. Hierfür benötigst du nur einen Zirkel.

Anleitung: eine Strecke mit dem Zirkel übertragen

  • Du hast eine Strecke $AB$ gegeben. Steche deinen Zirkel in Punkt $A$ ein.
  • Stelle die Öffnung des Zirkels exakt auf die Länge $AB$ ein. Behalte diesen Radius bei.
  • Nun stichst du mit der Zirkelspitze in den Punkt $A^{\prime}$ auf einer Geraden $h$.
  • Zeichne einen Kreisbogen, der die Gerade $h$ schneidet. Der Schnittpunkt des Kreisbogens mit der Gerade $h$ ist der Punkt $B^{\prime}$.

So hast du die Strecke $A^{\prime}B^{\prime}$ auf der Geraden $h$ gezeichnet, die genauso lang wie die Strecke $AB$ ist.

Strecke übertragen Zirkel

Wie kann ich einen Winkel mit einem Zirkel übertragen?

Mit Zirkel und Lineal können wir auch einen Winkel zeichnen, den wir von einem gegebenen Winkel übertragen. Das funktioniert, auch wenn wir die Größe des Winkels nicht kennen.

Anleitung: einen Winkel mit dem Zirkel übertragen

  • Gegeben sind zwei Geraden $g$ und $h$, die sich im Punkt $P$ unter dem Winkel $\alpha$ schneiden.
  • Zeichne eine Hilfsgerade $g^{\prime}$ und markiere auf dieser den Punkt $P^{\prime}$.
  • Zeichne einen Kreisbogen um den Punkt $P$, der die Geraden $g$ und $h$ schneidet, und benenne die Schnittpunkte mit $S_1$ und $S_2$. Je größer du den Kreisbogen zeichnest, desto leichter fallen die nächsten Schritte. Stelle den Radius, mit dem du den Kreisbogen gezeichnet hast, bei deinem Zirkel fest ein.

Winkel mit Zirkel übertragen

  • Steche nun mit der Spitze des Zirkels in den Punkt $P^{\prime}$, den du vorher gezeichnet hast. Zeichne ebenfalls einen Kreisbogen mit dem im Zirkel eingestellten Radius. Dieser muss die Gerade $g^{\prime}$ schneiden. Den Schnittpunkt nennen wir $S_3$.
  • Stelle nun den Zirkel exakt auf die Länge $S_1 S_2$ ein, indem du die Spitze in $S_1$ stichst und einen Kreisbogen durch $S_2$ andeutest.
  • Zeichne mit diesem Radius einen Kreisbogen durch $S_3$, der den ersten Kreisbogen um $P^{\prime}$ schneidet. Diesen Schnittpunkt nennen wir $S_4$.
  • Zeichne nun mit dem Lineal eine Gerade durch die Punkte $P^{\prime}$ und $S_4$. Diese Gerade bezeichnen wir mit $h^{\prime}$.

Der Schnittwinkel, der so konstruierten Geraden $g^{\prime}$ und $h^{\prime}$ entspricht dem Winkel $\alpha$ zwischen $g$ und $h$. Man sagt: Wir haben den Winkel $\alpha$ übertragen.

Winkel übertragen

Winkel und Strecken mit Zirkel und Lineal übertragen – Zusammenfassung

  • Eine Strecke überträgst du mit einem Lineal, indem du die Länge der Strecke misst und dann dieselbe Länge auf eine beliebige Gerade abträgst.
  • Um eine Strecke mit dem Zirkel zu übertragen, stellst du den Zirkel zunächst auf die Länge der Strecke ein. Danach trägst du die Strecke mit dem eingestellten Zirkel auf eine beliebige Gerade ab.
  • Um einen Winkel mit dem Zirkel zu übertragen, zeichnest du zunächst einen Kreisbogen um den Scheitel des Winkels und überträgst diesen auf eine Hilfsgerade. Dann stellst du den Zirkel auf den Abstand der Schnittpunkte des Kreisbogens mit den beiden Schenkeln des Winkel ein und ziehst damit einen Kreis durch den Schnittpunkt des ersten Kreisbogens mit der Hilfsgeraden. Der zweite Schenkel des übertragenen Winkels verläuft durch den Mittelpunkt des ersten Kreises und den Schnittpunkt der beiden Kreisbogen.

Auf dieser Seite findest du außerdem Arbeitsblätter mit Beispielen und interaktive Übungen zum Thema Strecken und Winkel mit Zirkel und Lineal übertragen.

Teste dein Wissen zum Thema Winkel Mit Zirkel Übertragen, Strecken Mit Lineal Übertragen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen

Karl Konrad, der königliche Kartograph, hat einen neuen Auftrag von seiner Majestät, der Königin. Diese möchte mit ihrer Schiffsflotte auf Reisen gehen. Damit alle ankommen, braucht jedes Schiff dieselbe Karte mit identischen Routen. Karl muss sich beim Zeichnen der Karten deshalb ausgesprochen gut damit auskennen, wie man Strecken und Winkel überträgt. Zum Übertragen von Strecken und Winkeln benötigen wir nur einen Zirkel und ein Lineal. Das Lineal verwendet Karl allerdings nicht zum Messen, sondern lediglich dazu, um gerade Linien zu zeichnen. Schauen wir uns zunächst an, wie man Strecken überträgt. Hier sehen wir die Strecke AB. Die exakte Länge ist uns unbekannt. Dennoch können wir diese Strecke auf eine andere Gerade h übertragen. Auf dieser Geraden zeichnen wir einen Punkt A-Strich ein. Mit dem Zirkel stechen wir nun in den Punkt A ein. Die Öffnung des Zirkels stellen wir exakt auf die Länge der Strecke AB ein. Diesen Radius behalten wir bei, stechen nun in A-Strich ein und zeichnen einen Kreisbogen um A-Strich. Der Kreisbogen muss so gezeichnet werden, dass er die Gerade h schneidet. Den Schnittpunkt des Kreisbogens mit der Geraden h nennen wir B-Strich. Die Strecke A-Strich, B-Strich ist genauso lang wie die Strecke AB. Somit haben wir die Strecke AB auf die Gerade h übertragen. Mit Zirkel und Lineal können wir auch Winkel übertragen. Die Geraden g und h schneiden sich im Punkt P und mit dem Winkel Alpha. Dessen genaue Größe kennen wir nicht. Um den Winkel zu übertragen, zeichnen wir zunächst eine Hilfsgerade g-Strich und markieren darauf einen Punkt P-Strich. Nun wollen wir um P einen Kreisbogen zeichnen. Je größer wir den Radius des Kreisbogens wählen, desto leichter lässt sich der Winkel übertragen. Wichtig ist dabei, dass g und h geschnitten werden. Die Schnittpunkte nennen wir S1 und S2. Mit dem gleichen Radius stechen wir nun in P-Strich ein und zeichnen ebenfalls einen Kreisbogen. Dieser muss die Gerade g-Strich schneiden. Den Schnittpunkt nennen wir S3. Anschließend stellen wir den Zirkel exakt auf die Länge der Strecke S1S2 ein. Mit diesem Radius zeichnen wir dann einen Kreisbogen um S3, der den Kreisbogen um P-Strich schneidet. Diesen Schnittpunkt nennen wir S4. Abschließend zeichnen wir eine Gerade durch P-Strich und S4. Wir bezeichnen die Gerade mit h-Strich. Mit dem Winkel Alpha schneiden sich auch die Geraden g-Strich und h-Strich. Lass uns das noch einmal zusammenfassen: Um eine Strecke zu übertragen, stellst du den Zirkel zunächst auf die Länge der Strecke ein. Danach kannst du die Strecke mit dem eingestellten Zirkel auf eine beliebige Gerade übertragen. Zum Übertragen von Winkeln verwendest du ebenfalls einen Zirkel. Dazu zeichnest du einen Kreisbogen um den Schnittpunkt der beiden Geraden und überträgst diesen auf eine Hilfsgerade. Dann überträgst du diesen Abstand auf den Kreisbogen an der Hilfsgeraden. Der so entstandene Winkel ist genauso groß wie der ursprüngliche. Karl Konrad hat endlich alle Karten fertig gezeichnet. Nun kann er sich dem Sonderauftrag der Königin widmen.

34 Kommentare
  1. ich schreibe morgen eine matheabeit bestimmt werde ich eine eins oder eine zwei

    Von Lara, vor 10 Monaten
  2. ssssssssssssssssüüüüüüüüüüüüüüüü ich habe eine eins und zweien im Zeugnis

    Von muhammed, vor 12 Monaten
  3. Mir gefällt es auch😃

    Von Noah, vor etwa einem Jahr
  4. Ich bin neu bei Sofatutor und habe mich verbessert. Ich bin in der vierten.

    Von Rosedersahara, vor etwa einem Jahr
  5. capybara

    Von Sevda, vor mehr als einem Jahr
Mehr Kommentare

Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grundkonstruktionen mit Zirkel und Lineal: Strecken und Winkel übertragen kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zum Übertragen von Strecken.

    Tipps

    Hier siehst du ein Bild der Konstruktion.

    Der Zirkel hilft dir, die Länge der Strecke festzuhalten.

    Lösung

    Hier siehst du ein Bild der Konstruktion. Diese kann dir helfen zu entscheiden, welche Aussagen richtig sind. Wir erhalten, dass folgende Aussagen falsch sind:

    „Zum Übertragen von Strecken benötigst du unterschiedliche Ausrüstungen, wie ein Geodreieck und einen Computer.“

    • Zum Übertragen von Strecken und Winkeln benötigst du nur einen Zirkel und ein Lineal.
    „Hast du die Öffnung des Zirkels auf die Länge der Strecke eingestellt, musst du nicht darauf achten, dass diese fest eingestellt bleibt. Es macht keinen Unterschied, wenn die Länge beim Einzeichnen unterschiedlich ist.“

    • Beim Übertragen von Strecken ist es sehr wichtig, dass diese Strecke auf deinem Zirkel eingestellt bleibt. Bleibt sie das nicht, verfälschst du deine Zeichnung.
    Folgende Aussagen sind richtig:

    „Um eine bekannte Strecke auf eine andere Gerade zu übertragen, stichst du zuerst mit dem Zirkel in einen Endpunkt ein und stellst anschließend die Öffnung des Zirkels auf die Länge der Strecke ein.“

    • Dies ist der erste Schritt der Konstruktion
    „Hast du die Länge der Strecke in deinem Zirkel eingestellt, stichst du den Zirkel in einem Punkt auf der Geraden ein und zeichnest einen Kreisbogen mit dem Radius der eingestellten Strecke. Dieser Bogen muss die Gerade schneiden.“

    „Der Einstichpunkt des Zirkels und der Punkt, wo sich Kreisbogen und Gerade schneiden, sind die Endpunkte der Strecke.“

    • So kannst du die Konstruktion abschließen.
  • Beschreibe das Übertragen von Winkeln.

    Tipps

    Der Kreisbogen hilft uns, den Winkel zu übertragen. Deshalb zeichnen wir denselben Kreisbogen in beide Zeichnungen ein.

    Indem wir den Abstand der Schnittpunkte aus der ursprünglichen Zeichnung mit dem Kreisbogen übertragen, können wir einen zweiten Schnittpunkt in unsere Zeichnung eintragen.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Die Geraden $g$ und $h$ schneiden sich im Punkt $P$. Zwischen den Geraden liegt der Winkel $\alpha$. Um den Winkel zu übertragen, zeichnen wir zuerst eine Hilfsgerade $g'$ und zeichnen dort einen Punkt $P'$ ein.“

    • Um den Winkel zu übertragen, müssen wir zunächst eine Hilfsgerade zeichnen, zu der wir den Winkel übertragen.
    „Anschließend zeichnen wir mit dem Zirkel einen Kreisbogen um $P$, der die Geraden $g$ und $h$ schneidet. Die Schnittpunkte bezeichnen wir mit $S_1$ und $S_2$.

    Mit dem gleichen Radius wie bei der ursprünglichen Zeichnung zeichnen wir einen Kreisbogen um $P'$, der die Gerade $g'$ im Schnittpunkt $S_3$ schneidet.“

    • Dieser Kreisbogen hilft uns, den Winkel zu übertragen. Deshalb zeichnen wir denselben Kreisbogen in beide Zeichnungen ein.
    „Anschließend stellen wir den Zirkel auf den Abstand der Schnittpunkte $S_1$ und $S_2$ ein und zeichnen einen weiteren Kreisbogen um $S_3$. Dieser muss den zuvor gezeichneten Kreisbogen um $P'$ schneiden. Dieser Schnittpunkt heißt $S_4$.“

    • Indem wir den Abstand der Schnittpunkte aus der ursprünglichen Zeichnung mit dem Kreisbogen übertragen haben, konnten wir einen zweiten Schnittpunkt in unsere Zeichnung eintragen.
    „Zuletzt zeichnen wir eine Gerade durch $P'$ und $S_4$. Diese bezeichnen wir mit $h'$. Zwischen $g'$ und $h'$ liegt derselbe Winkel $\alpha$ wie zwischen den Geraden $g$ und $h$.“

    • Mit diesem Schnittpunkt können wir jetzt den zweiten Schenkel des Winkels einzeichnen.
  • Erschließe die richtigen Konstruktionsschritte.

    Tipps

    Bei einem Winkel nennt man die beiden Geraden, die den Winkel bilden, Schenkel. Der Punkt, an dem sich die Geraden schneiden, wird Scheitelpunkt genannt.

    Lösung

    So kannst du die Konstruktionsschritte verbinden:

    Übertragen einer Strecke: Stelle deinen Zirkel auf die Länge der gewünschten Strecke ein. Stich in einen Punkt der Geraden ein und zeichne einen Kreisbogen, der die Gerade schneidet.

    • Der Punkt, in den du eingestochen hast, sowie der konstruierte Schnittpunkt sind Anfangs- und Endpunkt der gewünschten Strecke.
    Konstruktion zweier Punkte auf den Schenkeln, die denselben Abstand vom Scheitelpunkt des Winkels haben: Zeichne einen Kreisbogen um den Scheitelpunkt des Winkels, der die Schenkel des Winkels schneidet.
    • Die Schnittpunkte des Kreisbogens mit den beiden Geraden sind die gewünschten Punkte. Beide haben jeweils denselben Abstand zum Scheitelpunkt. Der exakte Abstand war hierbei nicht gegeben.
    Zwei Winkel miteinander vergleichen: Konstruiere $4$ Punkte auf den Schenkeln im gleichem Abstand zum jeweiligen Scheitelpunkt. Miss den Abstand der Punktpaare mithilfe des Zirkels.
    • Wir haben zwei Scheitelpunkte $P$ und $P'$. Von diesen gehen jeweils die Schenkel ab: $g$ und $h$ von $P$ und $g'$ und $h'$ von $P'$. Wir können nun den Zirkel beliebig einstellen und anschließend zwei Kreisbogen (einen um $P$ und einen um $P'$) ziehen, die denselben Radius haben. Die Schnittpunkte mit den jeweiligen Schenkeln können wir mit $S_1$, $S_2$ (auf $g$ und $h$) und $S_3$ und $S_4$ (auf $g'$ und $h'$) bezeichnen. Die Schnittpunkte haben durch die Konstruktion alle denselben Abstand zum jeweiligen Scheitelpunkt. Nun müssen nur noch die Abstände von $S_1$ zu $S_2$ mit $S_3$ zu $S_4$ verglichen werden. Dies ist am leichtesten, wenn du den Zirkel in $S_1$ stichst, den Abstand zu $S_2$ dann beim Zirkel feststellst und anschließend den Zirkel bei $S_3$ einstichst und überprüfst, ob der Abstand zu $S_4$ größer oder kleiner ist als die Zirkeleinstellung. So kannst du die Winkel miteinander vergleichen.
    Übertragen eines Winkels mithilfe zweier Punkte $S_1$ und $S_2$, die denselben Abstand vom Scheitelpunkt haben: Übertrage den Abstand zwischen Scheitelpunkt und $S_1$ und den Abstand zwischen $S_1$ und $S_2$ auf den neuen Winkel. Die Kreisbögen schneiden sich.

  • Ermittle, wo die übertragenen Strecken enden.

    Tipps

    Du kannst die Punkte bestimmen, indem du die Strecken überträgst.

    Zeichne die Koordinatensysteme in dein Heft und stelle deinen Zirkel auf die Länge der Strecke ein. Stich dann den Zirkel in den Punkt $A'$ und zeichne einen Kreisbogen, der die Gerade, auf der der Punkt $A'$ liegt, im positiven Bereich schneidet.

    In einem Koordinatensystem gibst du Punkte immer folgendermaßen an: Der $x$-Wert wird zuerst genannt, anschließend der $y$-Wert. Dazwischen befindet sich ein vertikaler Strich. Hast du also den Punkt $P(3 \vert 1)$ gegeben, dann gehst du zuerst vom Koordinatenursprung $(0 \vert 0)$ drei Schritte in $x$-Richtung nach rechts. Anschließend gehst du einen Schritt in $y$-Richtung nach oben. Dann befindest du dich am Punkt $P$

    Lösung

    Du kannst die Punkte bestimmen, indem du die Strecken überträgst. Dazu zeichnest du die Koordinatensysteme in dein Heft und stellst deinen Zirkel auf die Länge der Strecke ein. Dann stichst du den Zirkel in den Punkt $A'$ und zeichnest einen Kreisbogen, der die Gerade $g$ im positiven Bereich schneidet. Am Schnittpunkt befindet sich der Punkt $B'$. So erhältst du folgende Endpunkte:

    • Erster Punkt: $B'(9\vert7)$
    • Zweiter Punkt: $B'(4\vert7)$
    • Dritter Punkt: $B'(7\vert 9)$
  • Gib die richtige Reihenfolge der Konstruktionsschritte an.

    Tipps

    Alle Punkte oder Geraden, die einen Strich in ihrer Bezeichnung tragen (z. B. $P'$ oder $g'$), gehören zu der von uns konstruierten Zeichnung.

    So sieht die fertige Konstruktion aus.

    Lösung

    So sieht die fertige Konstruktion aus. Die Schritte gehören in diese Reihenfolge:

    „Zeichne eine Hilfsgerade $g'$ und markiere den Punkt $P'$.“

    • Zuerst benötigen wir eine Gerade, auf die wir den Winkel übertragen.
    „Zeichne einen Kreisbogen um $P$, der die beiden Geraden $g$ und $h$ schneidet. Zeichne einen weiteren Kreisbogen mit demselben Radius um $P'$, der die Gerade $g'$ im Punkt $S_3$ schneidet.“

    • Anschließend zeichnen wir auf der ursprünglichen Zeichnung und auf unserer Übertragung denselben Kreisbogen ein.
    „Die Schnittpunkte der Geraden $g$ und $h$ mit dem Kreisbogen nennen wir $S_1$ und $S_2$. Stelle den Zirkel auf den Abstand dieser beiden Schnittpunkte ein.“

    „Behalte die Öffnung deines Zirkels bei und zeichne einen weiteren Kreisbogen um den Schnittpunkt $S_3$, der auf der Geraden $g'$ liegt.“

    • Mit dem Abstand der Schnittpunkte in der ursprünglichen Zeichnung konstruieren wir einen zweiten Schnittpunkt in unserer Zeichnung.
    „Wo sich die beiden Kreisbögen unserer Zeichnung schneiden, befindet sich der Schnittpunkt $S_4$. Zeichnest du eine Gerade durch $P'$ und $S_4$, hast du den Winkel übertragen.“

  • Erläutere, warum das Übertragen von Strecken und Winkeln so funktioniert.

    Tipps

    So sieht die fertige Übertragung eines Winkels aus.

    Lösung

    Diese Aussage ist falsch:

    „Beim Übertragen von Winkeln verändert sich der Wert des Winkels.“

    • Dabei darf sich der Wert des Winkels nicht verändern. Sonst hast du den Winkel nicht übertragen, sondern einen neuen Winkel gezeichnet.
    Diese Aussagen sind richtig:

    „Eine Strecke hat eine feste Länge. Willst du sie übertragen, muss diese Länge erhalten bleiben. Deshalb misst du mit dem Zirkel die Länge der Strecke aus und darfst diese nicht verändern, bis du die Strecke übertragen hast.“

    • Ein Zirkel ist ein gutes Werkzeug, um Längen zu übertragen.
    „Alle Punkte auf einem Kreis haben denselben Abstand zum Mittelpunkt. Zeichnest du also einen Kreisbogen um den Scheitelpunkt, der die Schenkel des Winkels schneidet, dann findest du zwei Punkte, die jeweils den gleichen Abstand vom Scheitelpunkt haben.“

    • Da wir beim Übertragen von Winkeln Punkte konstruieren wollen, die denselben Abstand vom Scheitelpunkt haben, wenden wir dieses Vorgehen an.
    „Möchtest du einen Punkt finden, der den gleichen Abstand von den Punkten $A$ und $B$ hat, dann kannst du jeweils einen Kreis mit gleichem Radius um die beiden Punkte zeichnen. Die Schnittpunkte der Kreise haben den gleichen Abstand voneinander.“

    „Beim Übertragen von Winkeln konstruierst du drei Punkte. Mit diesen Punkten kannst du den Winkel zeichnen.“

    • Die drei zu konstruierenden Punkte heißen bei uns $S_3$, $S_4$ und $P'$. Willst du einen Winkel übertragen, so setzt du einen beliebigen Punkt $P'$. Anschließend ziehst du zuerst einen Kreisbogen mit einem beliebigen Winkel um den Scheitelpunkt des ursprünglichen Winkels. Der Kreisbogen schneidet die beiden Schenkel jeweils einmal, weshalb die Schnittpunkte $S_1$ und $S_2$ entstehen. Mit demselben Radius zeichnest du nun auch einen Kreisbogen um $P'$. Nun zeichnest du eine Gerade durch $P'$ und einem beliebigen Punkt $S_3$ auf deinem zweiten konstruierten Kreisbogen. Anschließend stellst du den Abstand von $S_1$ und $S_2$ auf deinem Zirkel ein. Mit dieser Einstellung stichst du den Zirkel in $S_3$ und ziehst einen Kreisbogen, welcher den Kreisbogen um den Scheitelpunkt $P'$ schneidet. Dieser Schnittpunkt ist der dritte zu konstruierende Punkt $S_4$. Nun musst du nur noch $S_4$ mit $P'$ verbinden. Der Winkel wurde nun übertragen.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.993

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.718

Lernvideos

37.382

Übungen

33.710

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden