Newton-Verfahren – Herleitung der Iterationsvorschrift
Das Newton-Verfahren ist eine Methode, um Nullstellen von Funktionen zu approximieren. Du erfährst, wie es funktioniert und erhältst Schritt-für-Schritt-Anleitungen. Interessiert? Dies und vieles mehr findest du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Newton-Verfahren – Herleitung der Iterationsvorschrift
Das Newton-Verfahren zur Nullstellenbestimmung
Manchmal müssen wir in der Mathematik die Nullstellen von Funktionen bestimmen, bei denen sich diese nicht direkt berechnen lassen. In solchen Fällen müssen wir auf sogenannte Näherungsverfahren zurückgreifen. Vielleicht kennst du sogar schon ein paar solcher Verfahren, wie zum Beispiel die Intervallhalbierung oder die Polynomdivision. Es gibt allerdings Funktionen, bei denen wir auch diese Verfahren nicht anwenden können. Dann müssen wir auf das Newton-Verfahren zurückgreifen. Was das Newton-Verfahren ist und wie es funktioniert, wollen wir uns im Folgenden genauer anschauen.
Das Newton-Verfahren – Erklärung
Um die Idee hinter dem Newton-Verfahren zu verstehen, betrachten wir die in der folgenden Abbildung gezeigte Situation.
Wir wollen die Nullstelle des Graphen der Funktion bestimmen. In der Abbildung ist neben dem Funktionsgraphen die Tangente des Graphen von an der Stelle eingetragen. Der Schnittpunkt dieser Tangente mit der -Achse liegt etwas näher an der Nullstelle als der Wert . Wenn wir diesen Schnittpunkt als bezeichnen und im Anschluss die Tangente an den Graphen von an der Stelle zeichnen, liegt der Schnittpunkt dieser Tangente wieder etwas näher an der Nullstelle.
Die Idee des Verfahrens ist es, dieses Vorgehen viele Male zu wiederholen. Da wiederholen im Lateinischen iterare heißt, spricht man daher auch von einem Iterationsverfahren. Je öfter man den Vorgang wiederholt, oder iteriert, umso näher kommt man dem wahren Wert der Nullstelle.
Nachdem wir die Idee des Verfahrens nun erläutert haben, wollen wir eine Formel für das Newton-Verfahren herleiten.
Das Newton-Verfahren – Herleitung
Wir beginnen damit, dass wir die allgemeine Tangentengleichung aufschreiben:
Darin ist die Steigung der Tangente und der -Achsenabschnitt. Da wir die Tangente betrachten, die an der Stelle an der Kurve von anliegt, muss die Steigung der Tangente der Steigung der Kurve an genau dieser Stelle entsprechen. Wir können also über die Ableitung von an der Stelle ausdrücken:
Um zu bestimmen, können wir ausnutzen, dass wir bereits einen Punkt der Tangente kennen. Da sich die Tangente und die Kurve ja gerade am Punkt berühren, muss gelten:
Für setzen wir auf der rechten Seite die Tangentengleichung mit dem bereits bestimmten Term für ein:
Diese Gleichung können wir nach umstellen, indem wir subtrahieren:
Den so für ermittelten Term setzen wir in die Tangentengleichung ein. Somit erhalten wir:
Jetzt können wir den Schnittpunkt der Tangente mit der -Achse bestimmen. Dazu setzen wir in den Funktionsterm der Tangentengleichung ein und setzen diesen Term gleich null:
Nun stellen wir nach um. Wir teilen zunächst auf beiden Seiten durch [Anmerkung: Die Ableitung darf an der Stelle natürlich nicht null sein, denn sonst können wir nicht durch sie teilen.]:
Jetzt können wir durch Subtraktion von und Addition von isolieren:
Damit können wir den Punkt bestimmen. Im Anschluss könnten wir nun die Tangente an der Funktion am Punkt bestimmen, um dann wiederum den Schnittpunkt der so ermittelten Tangente mit der -Achse zu berechnen. Da wir diese Schritte sehr häufig durchführen müssen, schreiben wir eine allgemeine Formel für die Iterationsvorschrift auf:
Damit haben wir die Iterationsvorschrift für das Newton-Verfahren hergeleitet.
Newton-Verfahren – Beispiel
Um die Anwendung des Newton-Verfahrens zu üben, rechnen wir ein konkretes Beispiel. Wir betrachten die Funktion . Diese Funktion hat genau eine Nullstelle, die wir bestimmen möchten. Zunächst müssen wir die erste Ableitung der Funktion bestimmen:
Setzen wir Funktion und Ableitung in die allgemeine Iterationsvorschrift ein, erhalten wir die Formel, die wir anwenden müssen:
Jetzt benötigen wir einen Startwert, der schon etwa dort liegen sollte, wo wir die Nullstelle vermuten. Dazu könnten wir eine Zeichnung anfertigen. Wir können aber auch ohne Zeichnung grob abschätzen, wo die Nullstelle in etwa liegen muss. Da der Term immer positiv ist, muss negativ sein – und damit muss auch die Nullstelle bei einem negativen -Wert liegen. Für ist der Funktionswert negativ, für ist der Funktionswert positiv. Also muss die Nullstelle irgendwo zwischen und liegen. Wir wählen daher als Startwert:
Im nächsten Schritt berechnen wir , indem wir in die Iterationsvorschrift einsetzen [dann ist und entsprechend ]. Damit erhalten wir:
Dieses Prozedere wiederholen wir so lange, bis sich das Ergebnis kaum noch verändert. In diesem Beispiel ist das nach fünf Iterationen der Fall. Die einzelnen Ergebnisse sind in der folgenden Tabelle aufgelistet.
Startwert | |
---|---|
Bei den ersten Iterationen, also für die Werte , und , schwankt das Ergebnis noch stark. Die Werte für und unterscheiden sich nur noch in den hinteren Nachkommastellen. Dies deutet darauf hin, dass wir der Nullstelle schon sehr nahe sind. Allerdings müssen wir den Wert überprüfen, indem wir ihn in die Ausgangsgleichung einsetzen:
Das Ergebnis ist , also schon sehr nahe an der Null. Damit haben wir die Nullstelle näherungsweise bestimmt. Wir könnten dem wahren Wert durch weitere Schritte noch näher kommen. An dieser Stelle reicht uns die Genauigkeit des bestimmten Werts allerdings aus.
Dieses Video
In diesem Video wird dir das Newton-Verfahren einfach erklärt. Dir wird außerdem gezeigt, wie du die Iterationsvorschrift für dieses Verfahren herleiten kannst. Text und Video zum Newton-Verfahren werden durch Aufgaben und ein Arbeitsblatt ergänzt.
Transkript Newton-Verfahren – Herleitung der Iterationsvorschrift
Newton-Verfahren- Herleitung der Iterationsvorschrift
Hallo und herzlich willkommen. Es existieren Funktionen deren exakten Nullstellen ihr mit den bisherigen Rechenverfahren noch nicht ermitteln könnt. Aus diesem Grund wollen wir dir heute ein Verfahren zur näherungsweisen Bestimmung von Nullstellen zeigen. Es heißt: Newton-Verfahren.
Du kennst sicherlich schon das Verfahren der Intervallhalbierung. Dir ist dann auch bekannt, dass dort die Konvergenzgeschwindigkeit recht gering ist. Wenn man mit Hilfe der Intervallhalbierung zum Beispiel die Nullstelle der Funktion f von x gleich x hoch 3 plus x hoch 2 plus 2 bestimmen möchte, so dauert das ziemlich lange. Auch hilft uns hier das Verfahren der Polynomdivision nicht weiter, da die Funktion nur eine Nullstelle hat, die zudem nicht ganzzahlig ist. Dies kannst du am Graphen der Funktion erkennen.
Hier hilft uns das Newton-Verfahren weiter. Schauen wir uns dazu einmal das folgende Bild an. Du siehst hier eine Funktion mit einer Nullstelle. An der Stelle x0 wurde die Tangente am Graphen durch den Punkt P0 eingezeichnet. An der Stelle x1 schneidet die Tangente die x-Achse. Wie du siehst, liegt x1 näher an der Nullstelle des GRaphen als x0.
Wenn man nun die Tangente der Funktion f an der Stelle x1 einzeichnet, dann würden wir einen neuen Schnittpunkt der x-Achse an der Stelle x2 erhalten. x2 liegt noch näher an der gesuchten Nullstelle der Funktion f.
Dieses Verfahren können wir nun endlos oft wiederholen und werden immer näher an die Nullstelle rücken. Da die Tangenten eine so große Bedeutung bei diesem Annäherungsverfahren an die Nullstelle hat, wird es auch als Tangentenverfahren bezeichnet.
Bisher haben wir aber nur eine zeichnerische Lösung des Problems gefunden. Zur Berechnung benötigen wir aber eine allgemeingültige Formel, die wir nun entwickeln.
Betrachten wir dazu alleine die Tangente durch den Punkt P0 an der Stelle x0. Damit wir die Stelle x1, an der die Tangente die x-Achse schneidet, berechnen können, benötigen wir die Tangentengleichung. Wir wissen, dass die Tangentengleichung die Form einer linearen Gleichung f (x)= mx + b besitzt, wobei m der Anstieg und b die y-Achsenverschiebung ist.
Wir wissen, dass f strich von x0 die Steigung der Tangente ist. Die y-Achsenverschiebung b müssen wir allerdings erst noch bestimmen. Dies wollen wir nun tun. Wir wissen, dass f an der Stelle x0 sich berechnen lässt durch f von x0 gleich f strich von x0 mal x0 +b. Diese Gleichung lösen wir nun nach b auf und erhalten damit den gesuchten y-Achsenabschnitt der Tangentenfunktionsgleichung: b gleich f von x0 minus f strich von x0 mal x0.
Als Funktionsgleichung der Tangente erhalten wir damit: t von x = f strich von x0 mal x + f von x0 - f strich von x0 mal x0
Um nun aber x1 zu bestimmen, betrachten wir die Stelle, an der die Tangente die x-Achse schneidet und damit den y-Wert 0 annimmt. Unser Ansatz lautet t(x)=0. Wir erhalten 0 = f strich von x0 mal x1 plus f von x0 minus f strich von x0 mal x0
Diese Gleichung dividieren wir im ersten Schritt durch f strich von x0 und erhalten 0 gleich x1 + f von x0 geteilt durch f strich von x0 minus x0. Als nächstes addieren wir auf beiden Seiten x0 und subtrahieren von beiden Seiten f von x null durch f strich von x null. Wir erhalten am Ende x1 gleich x0 - f von x0 geteilt durch f strich von x0.
Damit haben wir die Stelle x1, an dem die Tangente die x-Achse schneidet berechnet. Wiederholen wir nun das Verfahren und bilden die Tangente an der Stelle x1, dann können wir die Stelle x2 berechnen. Auf diese Weise erhalten wir x-Werte, die immer näher an die gesuchte Nullstelle rücken.
Da man das Verfahren ja immer wieder anwenden kann und dann die berechneten Werte neu einsetzt, machen wir eine allgemeingültige Formel aus unserer Formel für x1. Wir ersetzen x0 mit x n und x1 mit x n+1 und erhalten die Iterationsvorschrift des Newton-Verfahrens: x n+1 = x n - f von x n durch f strich von x n.
Damit du verstehst, wie die Iterationsvorschrift des Newton-Verfahrens angewendet wird, betrachten wir noch einmal unser Startbeispiel f von x = x hoch 3 + x hoch 2 +2.
Für das Newton-Verfahren brauchen wir die 1. Ableitung der Funktion. Sie heißt f strich von x gleich 3x hoch 2 + 2x.
Nun müssen wir f von x und f strich von x in die Iterationsvorschrift x n+1 = x n - f von x n durch f strich von x n einsetzen und erhalten x n+1 = x n - xn hoch drei + xn hoch 2 + 2 geteilt durch 3 mal xn hoch 2 + 2xn.
Zu Beginn musst du einen Startwert bestimmen, ein x0, das du als ersten Wert in die Iterationsvorschrift einsetzt. Wir wählen als Startwert x0 gleich -1. Setzt du für x0 -1 in die Iterationsvorschrift ein, erhälst du für x1 gleich -1 - f von -1 geteilt durch f strich von -1 gleich -1 - 2 geteilt durch 1 ist gleich -1 - 2 gleich -3.
Wenn wir den Wert von x1 nun in die Iterationsvorschrift einsetzen, dann erhalten wir auf dieselbe Weise für x2 gerundet -2,238. Diesen Wert setzen wir wieder in die Iterationsvorschrift ein und erhalten für x3 gerundet -1,836. Diesen Wert setzen wir wieder in die Iterationsvorschrift ein, um den Wert für x4 zu erhalten: Er beträgt gerundet -1,709. Ein letztes Mal setzen wir nun diesen Wert in unsere Iterationsvorschrift ein und erhalten für x5 gerundet -1,696.
Wie du siehst, unterscheiden sich die Werte von x4 und x5 kaum noch. Das bedeutet, dass wir schon sehr nah an der Nullstelle der Funktion f sind.
Zur Probe setzen wir den Wert von x5 in unsere Funktionsgleichung ein. f von -1,696 = -1,696 in Klammern hoch 3 + -1,696 in Klammern hoch 2 + 2 = -0,002, also fast Null. Wir haben die Nullstelle damit also bereits näherungsweise bestimmt.
Wenn wir uns unseren Graphen noch einmal anschauen, so sehen wir, dass natürlich auch unmittelbar in der Nähe der Stelle x5 = -1,696 die Nullstelle der Funktion f ist.
Ich hoffe, dass du die Herleitung der Iterationsvorschrift verstanden hast und damit noch viele Nullstellen bestimmen wirst! Ich wünsche dir noch einen schönen Tag!
Newton-Verfahren – Herleitung der Iterationsvorschrift Übung
-
Beschreibe die Vorgehensweise beim Newton-Verfahren.
-
Bestimme die ersten zwei Näherungswerte mithilfe des Newton-Verfahrens.
-
Bestimme die Iterationsvorschrift.
-
Bestimme die Nullstelle nach dem Newton-Verfahren.
-
Skizziere das Newton-Verfahren.
-
Bestimme die Nullstellen der vier Funktionen mit dem Newton-Verfahren.
9.213
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.121
Lernvideos
38.596
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter
@Timmermann Um: Da hast du gut aufgepasst. Es müssen gewisse Voraussetzungen erfüllt sein, damit das Newton-Verfahren tatsächlich funktioniert. Die Nullstelle kann approximiert werden, wenn beispielsweise folgende drei Bedingungen erfüllt sind:
1.) Der Startwert liegt in der Nähe der gesuchten Nullstelle.
2.) Die Funktion f ist differenzierbar.
3.) Die erste Ableitung f’ sollte in der Nähe der Nullstelle ungleich Null sein.
Die letzte Bedingung sichert damit, dass f'(xn) nicht Null wird.
Ich hoffe, dass ich dir helfen konnte.
Bei weiteren Fragen hilft dir auch gerne der Hausaufgaben-Chat, der Mo-Fr von 17-19 Uhr verfügbar ist.
Es kann aber sein, dass man gar nicht durch f´(xn) teilen kann!!!!