Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Proportionale Zuordnungen

Erfahre, was proportionale Zuordnungen sind, wie sie funktionieren und wie du den Proportionalitätsfaktor berechnest. Anhand des Beispiels einer Zombieapokalypse lernst du, wie du mit dem Dreisatz verschiedene Werte ermitteln kannst. Interessiert? Das und vieles mehr findest du im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Proportionale Zuordnungen

Was sind proportionale Zuordnungen?

1/5
Bereit für eine echte Prüfung?

Das Proportionale Zuordnungen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 580 Bewertungen
Die Autor*innen
Avatar
Team Digital
Proportionale Zuordnungen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Grundlagen zum Thema Proportionale Zuordnungen

Proportionale Zuordnungen – Mathematik

Was sind proportionale Zuordnungen? Das und den Aspekt, welche Eigenschaften eine proportionale Zuordnung besitzt, schauen wir uns im folgenden Text, einfach erklärt, genauer an. Außerdem lernst du, wie du mithilfe des Dreisatzes und des Proportionalitätsfaktors verschiedene Werte berechnen kannst und wie der Graph zu einer proportionalen Zuordnung aussieht.

Proportionale Zuordnungen – Beispiel

Zur Einführung in proportionale Zuordnungen schauen wir uns als Beispiel eine Zombieapokalypse an. Zombies ernähren sich von Gehirnen und brauchen in drei Tagen sechs Gehirne zum Überleben. Wenn wir nun wissen möchten, wie viele Gehirne Zombies an einem Tag oder an zehn Tagen brauchen, so können wir das mit dem Dreisatz ausrechnen:

Dreisatz proportionale Zuordnung Übung

Wollen die Zombies also fünf Tage überleben, so müssen sie zehn Gehirne essen. Wir können auf dem gleichen Weg auch berechnen, wie viele Gehirne die Zombies an zwei, vier oder mehr Tagen benötigen, und die Werte in einer Wertetabelle festhalten:

Tage (x) Gehirne (y)
1 2
2 4
3 6
4 8
5 10
... ...

So eine Zuordnung nennt man eine proportionale Zuordnung. Die Werte in der linken Spalte der Tabelle sind die xx-Werte und die Werte in der rechten Spalte sind die yy-Werte.

Wie erkennt man, dass eine Zuordnung proportional ist?

In der Tabelle können wir ein Muster erkennen: Verdoppelt man die xx-Werte, also z. B. von 22 auf 44, so verdoppeln sich auch die zugehörigen y-Werte, in diesem Fall von 44 auf 88.

Vervierfacht man die xx-Werte, z. B. von 11 auf 44, so vervierfachen sich auch die zugehörigen yy-Werte, hier von 22 auf 88. Genauso wird der Hälfte eines xx-Werts die Hälfte des zugehörigen yy-Werts zugeordnet: Halbiert man den xx-Wert 44 mit dem zugehörigen yy-Wert 88, so erhält man den xx-Wert 22 mit dem zugehörigen yy-Wert 44.

Allgemein ergibt sich die folgende Definition: Eine Zuordnung heißt proportional, wenn dem nn-Fachen von xx das nn-Fache von yy zugeordnet wird. Das können wir auch so aufschreiben:

nxnyn\cdot x \rightarrow n\cdot y

Möchte man also in einer Aufgabe herausfinden, wann eine Zuordnung proportional ist, so kann man überprüfen, ob diese Eigenschaft für die Wertepaare erfüllt ist.

Eine weitere Eigenschaft von proportionalen Zuordnungen erkennen wir, wenn wir in der Wertetabelle jeweils den y-Wert durch den x-Wert teilen:

Tage (x) Gehirne (y) y:x
1 2 2
2 4 2
3 6 2
4 8 2
5 10 2

Wir stellen fest, dass dieser Quotient für alle Wertepaare gleich ist. Man nennt diesen Quotienten auch Proportionalitätsfaktor und bezeichnet ihn mit kk, es ist also k=yxk=\frac{y}{x}. Die Wertepaare einer proportionalen Zuordnung nennt man dann quotientengleich.

Die Gleichung k=yxk=\frac{y}{x} kann man umstellen und erhält dann y=kxy=k\cdot x. Mithilfe dieser Gleichung können wir nun alle Werte der Zuordnung berechnen.

In unserem Beispiel ist k=2k=2 und so können wir alle y-Werte dieser Zuordnung über die Gleichung y=2xy=2\cdot x berechnen. Möchten wir die benötigte Gehirnanzahl für sechs Tage berechnen, so setzen wir 66 in die Gleichung ein:

y=26=12y=2\cdot 6 = 12

An sechs Tagen muss ein Zombie also 12 Gehirne verspeisen.

Teste dein Wissen zum Thema Proportionale Zuordnungen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Darstellung proportionaler Zuordnungen

Mithilfe der oben angelegten Wertetabelle können wir den Graphen zu der proportionalen Zuordnung in ein Koordinatensystem zeichnen. Auf der xx-Achse stehen die Tage und auf der yy-Achse die Anzahl der benötigten Gehirne. Tragen wir die Wertepaare aus der Tabelle nun in das Koordinatensystem ein und verbinden die Punkte, so erkennen wir, was für eine Form eine proportionale Zuordnung hat.

Proportionale Zuordnungen einfach erklärt

Bei proportionalen Zuordnungen liegen alle Punkte des zugehörigen Graphen auf einer Geraden. Diese Geraden verlaufen immer durch den Ursprung des Koordinatensystems.

Proportionale Zuordnungen – Zusammenfassung

Eine Zuordnung heißt proportional, wenn dem nn-fachen Wert von xx der nn-fache Wert von yy zugeordnet wird. Der Quotient k=xyk=\frac{x}{y} ist für alle Wertepaare der Zuordnung gleich groß. Wir nennen kk den Proportionalitätsfaktor der Zuordnung.

Stellen wir die Gleichung für kk nach yy um, also y=kxy=k\cdot x, so können wir alle weiteren Werte der proportionalen Zuordnung berechnen.

Der Graph zu einer proportionalen Zuordnung ist eine Gerade durch den Ursprung des Koordinatensystems.

Nach diesen Erklärungen kämpfen wir uns mit Mathe und proportionalen Zuordnungen weiter durch die Zombieapokalypse!

Willst du noch weitere Beispiele zu proportionalen Zuordnungen kennenlernen? Hier auf der Seite findest du noch Übungen und Arbeitsblätter mit Aufgaben zum Thema proportionale Zuordnungen.

Transkript Proportionale Zuordnungen

Die Zombie-Apokalypse ist im Gange. Zombies auf den Straßen haben alle das gleiche Ziel. Fressen finden! Und am liebsten fressen sie natürlich Gehirne. Und damit die Zombies nicht vollkommen durchdrehen, benötigen sie 6 Gehirne als Nahrung für 3 Tage. Wie viele Gehirne brauchen sie denn dann für 5 Tage? Um dies zu berechnen, können wir uns den Dreisatz zur Hilfe nehmen. Wir wissen, dass sie für 3 Tage 6 Gehirne benötigen. Teilen wir beide Seiten durch 3, so sehen wir, dass es pro Tag zwei Gehirne sind. Nun multiplizieren wir beide Seiten mit 5. Für 5 Tage würde ein Zombie also 10 Gehirne benötigen. Und so eine Art von Zuordnung nennt man eine proportionale Zuordnung. In 2 Tagen fressen die Zombies also 4 Gehirne und in 4 Tagen 8 Gehirne. Bei einer Verdopplung des einen Werts verdoppelt sich auch der andere Wert. Das Vierfache eines x-Wertes wird dem vierfachen des zugehörigen y-Wertes zugeordnet. So wird auch der Hälfte eines x-Wertes, die Hälfte des y-Wertes zugeordnet. Eine Zuordnung heißt proportional, wenn dem n-fachen Wert von x der n-fache Wert von y zugeordnet wird. Betrachten wir die Werte in der Tabelle nun genauer, so können wir erkennen, dass es bei proportionalen Zuordnungen eine weitere Besonderheit gibt. Der Quotient y geteilt durch x ist für alle Wertepaare gleich groß und heißt Proportionalitätsfaktor k. Die Wertepaare heißen dann quotientengleich. Teilen wir hier die y-Werte durch die x-Werte, so erhalten wir jedes mal zwei. k ist also zwei. Stellen wir diese Gleichung um, so erhalten wir y ist gleich k mal x und können so alle Werte der Zuordnung berechnen. In unserem Fall haben wir also y ist gleich zwei mal x. Setzen wir für x 6 ein, so können wir also die benötigte Gehirnanzahl für 6 Tage herausfinden. Das sind 12. Wir können uns die Wertepaare nun zur Hilfe nehmen, um den Graphen der Zuordnung in ein Koordinatensystem einzuzeichnen. Auf der x-Achse sind die Tage und auf der y-Achse die Anzahl der benötigten Gehirne. Tragen wir die verschiedenen Wertepaare nun ein so sehen wir was für eine Form der Graph der Zuordnung hat. Bei proportionalen Zuordnungen liegen alle Punkte des zugehörigen Graphen auf einer Geraden und diese Geraden verlaufen immer durch den Ursprung. Während die Zombies noch weiter auf der Suche nach Gehirnen sind, fassen wir zusammen. Eine Zuordnung heißt proportional, wenn dem n-fachen Wert von x der n-fache Wert von y zugeordnet wird. Wenn sich der x-Wert verdoppelt, so verdoppelt sich auch der y-Wert und umgekehrt. Fehlende Werte kann man mit dem Dreisatz berechnen. Der Quotient y geteilt durch x ist für alle Wertepaare gleich groß. Diesen Quotienten nennen wir den Proportionalitätsfaktor k. Stellen wir diese Gleichung nach y um, so können wir alle weiteren Werte berechnen. Tragen wir die Punkte der Zuordnung in ein Koordinatensystem ein, so sehen wir, dass sich der Graph in der Form einer Geraden durch den Ursprung ergibt. Und das Essen ist anscheinend zubereitet. Huh, ein Kopf-salat?! Der war als Mensch wohl Vegetarier.

45 Kommentare
  1. Dankeschön 😊😊😊😊😊

    Von Nina, vor etwa 2 Monaten
  2. Super aber könnte ihr nicht auch weitere Videos von Koordinatensystem 6 klasse machen, andere b.s für Koordinatensysteme. Danke

    Von Mia, vor 4 Monaten
  3. Danki😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊

    Von Milena, vor 4 Monaten
  4. Wir hatten nur sehr kurz in Unterricht und ich hatte gar nichts verstanden. Und morgen schreibe ich eine KA. Es hat total weitergeholfen! Weiter so!

    Von Lieblingslernstern, vor etwa einem Jahr
  5. Hütet euch vor dem Zombies! Ich glaube sie wurde von Außerirdischen erschaffen und arbeitet für denen! 👽+🧟‍♂️=☠️💀

    Von Khang Anh , vor etwa einem Jahr
Mehr Kommentare

Proportionale Zuordnungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Proportionale Zuordnungen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.152

sofaheld-Level

6.601

vorgefertigte
Vokabeln

8.069

Lernvideos

37.109

Übungen

33.424

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden