Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Was ist eine Wurzelfunktion?

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Wurzelfunktion Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.5 / 8 Bewertungen
Die Autor*innen
Avatar
Peter Mahns
Was ist eine Wurzelfunktion?
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Was ist eine Wurzelfunktion?

In der Mathematik spielen Funktionen eine ganz entscheidende Rolle. Es gibt viele unterschiedliche Arten von Funktionen. Du hast mit Sicherheit schon etwas von der Potenzfunktion gehört. Was passiert aber, wenn du zu einem bestimmten y-Wert den passenden x-Wert bei einer Potenzfunktion bestimmen willst? In diesem Video lernst du kennen, wie du dafür die Umkehrfunktion der Potenzfunktion, nämlich die Wurzelfunktion, anwenden kannst.

Transkript Was ist eine Wurzelfunktion?

Hallo und herzlich Willkommen zu meinen Video, in dem wir die Frage klären wollen, was denn eigentlich eine Wurzelfunktion ist. Schauen wir uns dazu einen Eiswürfel an. Es gibt unterschiedlich große Eiswürfel, weshalb die Länge einer Seite variiert. Wir bezeichnen diese also mit x. Das Volumen eines Eiswürfels ist in Abhängigkeit von der Seitenlänge x ebenfalls unterschiedlich groß. Es ergibt sich aus V(x)=x3. Die Seitenlänge x ist natürlich größer oder gleich Null. Daher ist auch x3 größer oder gleich Null.

In einem Koordinatensystem, in dem das Volumen V in cm3 in Abhängigkeit von der Seitenlänge x in cm dargestellt wird, ergibt sich folgender Graph. Dies ist der Graph einer Potenzfunktion dritten Grades.

Wenn wir nun ein bestimmtes Volumen, z. B. 8cm3, gegeben haben und ablesen wollen, wie lang dann x sein muss, ist es auch möglich, die Seitenlänge x in Abhängigkeit vom Volumen V darzustellen. Dafür vertauschen wir die x- und y-Achse: Aus x in cm wird nun V in cm3 und aus V in cm3 wird x in cm. Der Graph verändert sich dann so, dass er an der Ursprungsgeraden t mit t(x)=x gespiegelt wird. Wichtig dabei ist, dass x größer gleich Null ist. Bei dem dargestellten Graphen handelt es sich nun um eine Wurzelfunktion.

Wir wollen die graphische Veranschaulichung nun verallgemeinern und formalisieren. Für die Potenzfunktion f(x)=xn sei x eine beliebige reelle Zahl, die größer oder gleich Null ist. Zudem ist n eine natürliche Zahl, die ungleich 0 ist. Wegen x größer gleich Null, ist auch xn größer oder gleich Null. Außerdem tritt kein Funktionswert doppelt auf. Daher existiert eine Umkehrfunktion g, sodass g(xn)=x ist. Setzt man nun xn=y, dann ist x=n-te Wurzel aus (y) wegen x≥0 äquivalent dazu. Also ist g(y)=n-te Wurzel aus (y). Bezeichnen wir die unabhängige Größe noch wie üblich mit x, dann ergibt sich g(x)=n-te Wurzel aus (x) als Umkehrfunktion einer Potenzfunktion n-ten Grades. Dies ist dann eine Wurzelfunktion.

Schauen wir uns ein paar Eigenschaften der Wurzelfunktion an. Dazu zeichnen wir drei Wurzelfunktionen mit unterschiedlichen natürlichen Zahlen n in ein Koordinatensystem ein. Einmal für n=2, n=3 und n=5. Der Definitions- und Wertebereich besteht aus allen positiven reellen Zahlen. Es ist weiterhin g(0)=n-te Wurzel aus 0=0 und g(1)=n-te Wurzel aus 1=1 für alle natürlichen Zahlen n. Damit sind P1=(0|0) und P2=(1|1) besondere Punkte einer Wurzelfunktion. Außerdem folgt, dass x=0 eine Nullstelle ist. Die Wurzelfunktion ist zudem eine monoton steigende Funktion.

Fassen wir noch einmal zusammen: Die Potenzfunktion f(x)= xn mit der natürlichen Zahl n und n ungleich 0, besitzt mit der Einschränkung für x aus dem Bereich der positiven reellen Zahlen mit der Null eine Umkehrfunktion g. g heißt Wurzelfunktion mit der Funktionsgleichung g(x)=n-te Wurzel aus x. Der Definitions- und Wertebereich von g besteht aus der Menge der positiven reellen Zahlen mit der Null . Die Punkte P1=(0|0) und P2=(1|1) sind besondere Punkte von g. Der Graph der Wurzelfunktion g ist außerdem monoton steigend. Beide Eigenschaften sind unabhängig von n. Das war‘s von mir. Ich danke dir für‘s Zuschauen und bis zum nächsten Mal.

1 Kommentar
  1. Die Graphen sind m.E. falsch
    für 0 < x<1 ist die Quadratwurzel kleiner als die 3. Wurzel und...

    Von Karlparensen, vor mehr als 4 Jahren

Was ist eine Wurzelfunktion? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was ist eine Wurzelfunktion? kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.172

sofaheld-Level

6.601

vorgefertigte
Vokabeln

8.070

Lernvideos

37.104

Übungen

33.418

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden