Was ist eine Wurzelfunktion?

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Was ist eine Wurzelfunktion?
In der Mathematik spielen Funktionen eine ganz entscheidende Rolle. Es gibt viele unterschiedliche Arten von Funktionen. Du hast mit Sicherheit schon etwas von der Potenzfunktion gehört. Was passiert aber, wenn du zu einem bestimmten y-Wert den passenden x-Wert bei einer Potenzfunktion bestimmen willst? In diesem Video lernst du kennen, wie du dafür die Umkehrfunktion der Potenzfunktion, nämlich die Wurzelfunktion, anwenden kannst.
Transkript Was ist eine Wurzelfunktion?
Hallo und herzlich Willkommen zu meinen Video, in dem wir die Frage klären wollen, was denn eigentlich eine Wurzelfunktion ist. Schauen wir uns dazu einen Eiswürfel an. Es gibt unterschiedlich große Eiswürfel, weshalb die Länge einer Seite variiert. Wir bezeichnen diese also mit x. Das Volumen eines Eiswürfels ist in Abhängigkeit von der Seitenlänge x ebenfalls unterschiedlich groß. Es ergibt sich aus V(x)=x3. Die Seitenlänge x ist natürlich größer oder gleich Null. Daher ist auch x3 größer oder gleich Null.
In einem Koordinatensystem, in dem das Volumen V in cm3 in Abhängigkeit von der Seitenlänge x in cm dargestellt wird, ergibt sich folgender Graph. Dies ist der Graph einer Potenzfunktion dritten Grades.
Wenn wir nun ein bestimmtes Volumen, z. B. 8cm3, gegeben haben und ablesen wollen, wie lang dann x sein muss, ist es auch möglich, die Seitenlänge x in Abhängigkeit vom Volumen V darzustellen. Dafür vertauschen wir die x- und y-Achse: Aus x in cm wird nun V in cm3 und aus V in cm3 wird x in cm. Der Graph verändert sich dann so, dass er an der Ursprungsgeraden t mit t(x)=x gespiegelt wird. Wichtig dabei ist, dass x größer gleich Null ist. Bei dem dargestellten Graphen handelt es sich nun um eine Wurzelfunktion.
Wir wollen die graphische Veranschaulichung nun verallgemeinern und formalisieren. Für die Potenzfunktion f(x)=xn sei x eine beliebige reelle Zahl, die größer oder gleich Null ist. Zudem ist n eine natürliche Zahl, die ungleich 0 ist. Wegen x größer gleich Null, ist auch xn größer oder gleich Null. Außerdem tritt kein Funktionswert doppelt auf. Daher existiert eine Umkehrfunktion g, sodass g(xn)=x ist. Setzt man nun xn=y, dann ist x=n-te Wurzel aus (y) wegen x≥0 äquivalent dazu. Also ist g(y)=n-te Wurzel aus (y). Bezeichnen wir die unabhängige Größe noch wie üblich mit x, dann ergibt sich g(x)=n-te Wurzel aus (x) als Umkehrfunktion einer Potenzfunktion n-ten Grades. Dies ist dann eine Wurzelfunktion.
Schauen wir uns ein paar Eigenschaften der Wurzelfunktion an. Dazu zeichnen wir drei Wurzelfunktionen mit unterschiedlichen natürlichen Zahlen n in ein Koordinatensystem ein. Einmal für n=2, n=3 und n=5. Der Definitions- und Wertebereich besteht aus allen positiven reellen Zahlen. Es ist weiterhin g(0)=n-te Wurzel aus 0=0 und g(1)=n-te Wurzel aus 1=1 für alle natürlichen Zahlen n. Damit sind P1=(0|0) und P2=(1|1) besondere Punkte einer Wurzelfunktion. Außerdem folgt, dass x=0 eine Nullstelle ist. Die Wurzelfunktion ist zudem eine monoton steigende Funktion.
Fassen wir noch einmal zusammen: Die Potenzfunktion f(x)= xn mit der natürlichen Zahl n und n ungleich 0, besitzt mit der Einschränkung für x aus dem Bereich der positiven reellen Zahlen mit der Null eine Umkehrfunktion g. g heißt Wurzelfunktion mit der Funktionsgleichung g(x)=n-te Wurzel aus x. Der Definitions- und Wertebereich von g besteht aus der Menge der positiven reellen Zahlen mit der Null . Die Punkte P1=(0|0) und P2=(1|1) sind besondere Punkte von g. Der Graph der Wurzelfunktion g ist außerdem monoton steigend. Beide Eigenschaften sind unabhängig von n. Das war‘s von mir. Ich danke dir für‘s Zuschauen und bis zum nächsten Mal.
Was ist eine Wurzelfunktion? Übung
9.172
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.070
Lernvideos
37.104
Übungen
33.418
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal
Die Graphen sind m.E. falsch
für 0 < x<1 ist die Quadratwurzel kleiner als die 3. Wurzel und...