Messen und Zeichnen von Winkeln
Winkel messen bedeutet, die Gradzahl zwischen zwei Halbgeraden zu bestimmen. Mit einem Geodreieck misst man und liest gegen den Uhrzeigersinn ab. Man kann auch Winkel zeichnen, indem man das Geodreieck an die Linie anlegt und die Gradzahl markiert. Interessiert? Das und Übungen findest du im Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Messen und Zeichnen von Winkeln Übung
-
Gib an, wie du einen Winkel messen kannst.
TippsHier messen wir einen Winkel von $40^\circ$.
Der wichtigste Vorteil bei einem Geodreieck sind die beiden Halbkreise mit den Skalen, die uns beim Ermitteln der Winkelgröße helfen.
Der Punkt $S$ markiert hier den Scheitel des Winkels $\alpha$.
LösungDiese Schritte solltest du beim Messen von Winkeln immer beachten:
- Zuerst suchst du dir dein Geodreieck. Dieses hat eine Linealkante, mit der du Längen messen kannst. Viel wichtiger ist aber der meist farblich markierte Bogen: Die Skala auf diesem Bogen gibt die Winkelgröße in Grad an.
- Zum Messen legst du das Geodreieck so mit der Linealkante an einen der Schenkel an, dass sich der Winkelscheitel genau bei der Null auf dem Lineal befindet. Der zweite Schenkel muss dabei unter dem Geodreieck liegen. Je nachdem, an welchen Schenkel du das Geodreieck anlegst, musst du die innere oder äußere Skala des Bogens betrachten. Merke dir, dass du immer die Skala nimmst, die dort mit der $0$ beginnt, wo dein Schenkel anliegt.
- Am anderen Scheitel kannst du nun erkennen, wie groß der Winkel ist. Hier sehen wir, dass die Größe des Winkels $50^\circ$ beträgt. Dies kannst du dann einfach ablesen.
-
Erkläre, wie du Winkel zeichnen kannst.
TippsEin Winkel wird immer von $2$ Schenkeln eingeschlossen.
Der Bogen auf deinem Geodreieck ist in $180$ Abschnitte mit jeweils $1^\circ$ eingeteilt.
LösungDie Ameisenarchitektin Antonia soll eine Brücke mit mehreren Tragseilen konstruieren, die jeweils an der Spitze der Pflanze befestigt werden. Die Spitze wird also unser Scheitel aller Winkel. Damit die Brücke stabil ist, müssen die Winkel zwischen den Tragseilen genau richtig gezeichnet sein. Zwischen dem hier gelb eingezeichneten Tragseilende und dem dazugehörigen auf der anderen Seite soll ein Winkel der Größe $65^\circ$ liegen.
Dazu legt Antonia ein Geodreieck mit der Linealkante an den Schenkel an. Dabei muss sie beachten, dass der Scheitel genau bei der $0$ liegt, sonst bekommt man ein falsches Ergebnis.
Dann misst sie mithilfe der Skala auf dem Kreisbogen genau $65^\circ$ ab und markiert die Stelle mit einem Punkt. Hierbei ist es wichtig, zu beachten, dass es zwei unterschiedliche Skalen gibt. Man nimmt immer die, bei der der Scheitel bei $0^\circ$ anliegt.
Danach zeichnet sie eine Linie durch den Scheitel und diese Markierung, um das andere Tragseilende zu erhalten. Dies ist dann der zweite Schenkel des Winkels.
-
Bestimme die Größen der folgenden Winkel.
TippsFür einen überstumpfen Winkel reicht dein Geodreieck nicht aus, da du nur Winkel bis zu einer Größe von $180^\circ$ messen kannst. Hier zeichnest du zunächst einen gestreckten Winkel ($180^\circ$) ein, misst dann den restlichen Winkel und addierst beide Werte.
LösungWir messen zunächst die beiden einfacheren spitzen Winkel, da wir diese direkt am Geodreieck ablesen können. Das Geodreieck liegt am unteren Schenkel an, also brauchen wir die Skala, die dort bei $0$ anfängt. Das ist die obere auf dem Kreisbogen, somit gelten folgende Größen:
- 1. Bild: $60^\circ$
- 3. Bild: $85^\circ$
Somit gelten folgende Größen:
- 2. Bild: $180^\circ+30^\circ=210^\circ$
- 4. Bild: $180^\circ+45^\circ=225^\circ$
-
Entscheide, welche Winkel entsprechend der Angabe korrekt gezeichnet wurden.
TippsDieser Winkel ist korrekt gezeichnet. Er setzt sich aus einem gestreckten Winkel ($180^\circ$) und einem stumpfen Winkel der Größe $135^\circ$ zusammen und hat somit eine Größe von $315^\circ$.
LösungKorrekt gezeichnet wurden die folgenden Winkel:
- $\alpha=260^\circ$
- Zunächst zeichnet man einen waagerechten Schenkel und markiert den Scheitelpunkt.
- Der Schenkel wird über den Scheitelpunkt hinaus verlängert durch eine leicht gezeichnete, gestrichelte Linie.
- Der überstumpfe Winkel $\alpha=260^\circ$ setzt sich aus dem gestreckten Winkel ($=180^\circ$) und einem spitzen Winkel zusammen. Für diesen bildet man einfach die Differenz: $260^\circ-180^\circ=80^\circ$.
- Das Geodreieck wird unterhalb des Schenkels mit der Nullmarkierung im Scheitelpunkt angelegt und der spitze Winkel abgetragen. Dort wird eine Markierung angebracht.
- Die Verbindung des Scheitelpunktes mit dieser Markierung ist der zweite Schenkel.
- $\alpha=280^\circ$
Falsch gezeichnet wurden die folgenden Winkel:
- $\alpha=190^\circ$
- $\alpha=360^\circ$
- $\alpha=110^\circ$
- Zunächst zeichnet man einen waagerechten Schenkel und markiert den Scheitelpunkt.
- Das Geodreieck wird an den Schenkel mit der Nullmarkierung im Scheitelpunkt angelegt und der stumpfe Winkel mit $\alpha=110^\circ$ abgetragen. Dort wird eine Markierung angebracht.
- Die Verbindung des Scheitelpunktes mit dieser Markierung ist der zweite Schenkel.
-
Vergleiche die Winkel.
TippsEin Vollwinkel hat eine Größe von $360^\circ$ und ist damit der größte. Er sieht aus wie ein (vollständiger) Kreis.
LösungWährend wir die Winkel der Größe nach ordnen, gehen wir gleich noch einmal auf die Bezeichnungen ein, die dir helfen, Winkel zu unterscheiden:
- Der kleinste Winkel hat eine Größe von $45^\circ$. Damit handelt es sich um einen spitzen Winkel. So nennen wir alle Winkel, für die $0^\circ<\alpha<90^\circ$ gilt.
- Danach folgt der rechte Winkel. Dieser wird häufig mit einem Punkt im Winkelbogen markiert. Seine Größe beträgt immer $90^\circ$.
- Der nächstgrößere Winkel hat eine Größe von $160^\circ$. Damit handelt es sich hierbei um einen stumpfen Winkel. So nennen wir alle Winkel, für die $90^\circ<\alpha<180^\circ$ gilt.
- Danach folgt der gestreckte Winkel, dessen Schenkel immer eine Gerade bilden. Seine Größe beträgt immer $180^\circ$.
- Der nächstgrößere Winkel hat eine Größe von $210^\circ$. Damit handelt es sich hierbei um einen überstumpfen Winkel. So nennen wir alle Winkel, für die $180^\circ<\alpha<360^\circ$ gilt.
- Ein ganzer Kreis wird auch als Vollwinkel bezeichnet. Seine Größe beträgt immer $360^\circ$.
-
Ermittle die fehlenden Winkel.
TippsZeichne den Winkel $\alpha$ in dem Scheitelpunkt $A$. Dabei muss der Winkel gegen den Uhrzeigersinn abgelesen werden.
Wenn die beiden Winkel gezeichnet sind, kannst du den fehlenden Winkel messen.
Wenn du die drei Winkel addierst, erhältst du $180^\circ$.
LösungMan zeichnet zunächst die Strecke zwischen den beiden Punkten $A$ und $B$ mit der Länge $4 \text{ cm}$.
- Das Geodreieck wird in $A$ angelegt und gegen den Uhrzeigersinn wird der Winkel $\alpha$ abgetragen. So erhält man den zweiten Schenkel, der von $A$ ausgeht. Auf diesem liegt $C$ mit einem Abstand von $2\text{ cm}$ zu $A$.
- Das Geodreieck wird in $B$ angelegt und im Uhrzeigersinn wird der Winkel $\beta$ abgetragen. So erhält man den zweiten Schenkel, der von $B$ ausgeht und auf dem $C$ liegt.
- Dort, wo die beiden Schenkel sich schneiden, befindet sich der Punkt $C$.
- Nun kann das Geodreieck in $C$ zum Beispiel an der Strecke von $\overline{AC}$ angelegt werden. Der Winkel wird gegen den Uhrzeigersinn abgelesen. Wenn man sehr genau gezeichnet hat, erhält man den Winkel $\gamma=90^\circ$. Aber Ergebnisse $85^\circ < \gamma < 95^\circ$ sind ebenfalls in Ordnung, wenn auch nicht ganz präzise.
Nun kann auf beiden Seiten $90^\circ$ subtrahiert werden: Man erhält $\gamma=180^\circ-90^\circ=90^\circ$.
Für das gleichseitige Dreieck kannst du ebenso vorgehen oder überlegst dir, dass alle drei Winkel gleich groß sein müssen und somit $60^\circ$ betragen.
9.182
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.109
Lernvideos
37.100
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter