Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Reaktionen der Alkane – radikalische Substitution

Bei der radikalischen Substitution in der Chemie, ersetzen wir Molekül- oder Atomgruppen durch ein anderes Molekül oder Atom. Dabei entstehen reaktive Radikale. In einer dreistufigen Kettenreaktion machen wir dich step by step mit dem Prozess vertraut und zeigen dir, was bei einer spezifischen Halogenierung passiert. Dazu lüften wir das Geheimnis um die Stabilität von Radikalen. Interesse an der faszinierenden Welt der chemischen Reaktionen? Dann lies weiter!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Radikalische Substitution Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.3 / 4 Bewertungen
Die Autor*innen
Avatar
Team Digital
Reaktionen der Alkane – radikalische Substitution
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse

Grundlagen zum Thema Reaktionen der Alkane – radikalische Substitution

Radikalische Substitution – Chemie

In der Chemie gibt es einige Reaktionsmechanismen. Eine davon ist die radikalische Substitution. Doch was passiert überhaupt bei einer Substitution? Und was entsteht bei einer radikalischen Substitution? Alle diese Fragen werden im folgenden Text beantwortet.

Was ist die radikalische Substitution? – Definition

Einfach erklärt ist die radikalische Substitution SRS_R ein Reaktionsmechanismus in der organischen Chemie. Substituieren bedeutet ersetzen einer Molekül- oder Atomgruppe durch ein anderes Molekül oder Atom (häufig durch Halogen- oder Sauerstoffatome). Bei einem Radikal handelt es sich um Atome oder Verbindungen, die ungepaarte Elektronen besitzen. Dargestellt werden Radikale mit einem Punkt neben dem Elementsymbol. Sie sind sehr reaktionsfreudig. Bei der radikalischen Substitution kommt es zu einer Radikalkettenreaktion. Es werden drei Schritte durchlaufen:

  1. Startreaktion der radikalischen Substitution
  2. Kettenreaktion bzw. Kettenfortpflanzung der radikalischen Substitution
  3. Abbruchreaktion bzw. Kettenabbruch der radikalischen Substitution

Aber wann wird die Kettenreaktion bei der radikalischen Substitution abgebrochen und wie kommt es überhaupt zum Kettenabbruch? Das schauen wir uns jetzt im Folgenden Schritt für Schritt an.

Wie läuft die radikalische Substitution ab? – Beispiel Halogenierung

Als Beispiel für eine radikalische Substitution SRS_R schauen wir uns nun die Halogenierung genauer an. Die Halogenierung ist ein Reaktionsmechanismus, bei dem Alkane mit den gebildeten Radikalen der Halogene reagieren. Die Halogene befinden sich in der VII. Hauptgruppe im Periodensystem der Elemente. Zu diesen gehören zum Beispiel Fluor F\ce{F}, Chlor Cl\ce{Cl} oder Brom Br\ce{Br}. Das Radikal kann dann mit dem zu substituierenden Molekül in einer Kettenreaktion reagieren, bis es zum Kettenabbruch kommt.

In der folgenden Tabelle ist eine allgemeine Reaktionsgleichung mit der jeweiligen Erklärung zur Substitutionsreaktion dargestellt:

Reaktion Erklärung
Start-
reaktion
XX2Halogenmoleku¨lΔTX+X2Radikale \footnotesize{\ce{\overset{Halogenmolekül}{X2} ->[\Delta T] \overset{2 Radikale}{X. + X.}}} Bildung eines Radikals: Radikale bilden sich, indem Licht oder Wärme hinzugefügt wird. Die Energiezufuhr führt dazu, dass die kovalente Bindung gespalten wird. Dem Halogenatom bleibt ein Bindungselektron. Es ist also ein Radikal.
Ketten-
reaktion
XHalogenradikal+RHAlkanHXHalogenwasserstoff+RAlkylradikal\footnotesize{\ce{\overset{Halogenradikal}{X.} + \overset{Alkan}{R-H} -> \overset{Halogenwasserstoff}{H-X} + \overset{Alkylradikal}{R.}}}


RAlkylradikal+XX2Halogenmoleku¨lRXHalogenalkan+XHalogenradikal \footnotesize{ \ce{\overset{Alkylradikal}{R.} + \overset{Halogenmolekül}{X2} -> \overset{Halogenalkan}{R-X} + \overset{Halogenradikal}{X.}}}
Das Halogenradikal greift den Kohlenwasserstoff an. Dabei reagiert es zu einem Halogenwasserstoff und einem Alkylradikal. Im weiteren Verlauf reagiert das Alkylradikal mit dem Halogenmolekül. Es entstehen ein Halogenalkan und ein Halogenradikal.
Ketten-
abbruch
R+XAlkylradikal und HalogenradikalRXHalogenalkan\footnotesize{ \ce{\overset{ Alkylradikal und Halogenradikal}{R. + X.} -> \overset{Halogenalkan}{R-X}}}


R+RZwei AlkylradikaleRRAlkan \footnotesize{\ce{\overset{Zwei Alkylradikale}{R. + R.} -> \overset{Alkan}{R-R}}}


X+XZwei HalogenradikaleXX2Halogenmoleku¨l \footnotesize{\ce{\overset{Zwei Halogenradikale}{X. + X.} -> \overset{Halogenmolekül}{X2}}}
Sobald zwei Radikale aufeinandertreffen, kommt es zur Abbruchreaktion. Dabei können drei Kombinationsmöglichkeiten auftreten:
1. Alkylradikal und Halogenradikal
2. Zwei Alkylradikale
3. Zwei Halogenradikale

Der dabei ablaufende Reaktionsmechanismus der radikalischen Substitution wird in der folgenden Abbildung an einem konkreten Beispiel noch einmal verdeutlicht:

Was ist eine Radikalkettenreaktion? Mechanismus radikalische Substitution Alkane mit Chlor

Für die bei der Reaktion dieser radikalischen Substitution entstehenden Halogenkohlenwasserstoffe gibt es einen Nachweis: In Verbindung mit dem Element Kupfer Cu\ce{Cu} weisen Halogenkohlenwasserstoffe eine grüne Flammenfärbung auf.

Weitere Beispiele für radikalische Substitutionsreaktionen sind zum Beispiel die Bromierung, die Peroxygenierung, die Sulfochlorierung oder die Nitrierung.

Radikalische Substitution an Aromaten

Bei der radikalischen Substitution an Aromaten SArS_Ar greifen die Radikale bevorzugt den aliphatischen Teil – also die Seitenkette – an. Der Ring bildet den aromatischen Teil einer chemischen Verbindungen. Die radikalische Substitution von Benzol ist beispielsweise eine radikalische aromatische Substitution.

Teste dein Wissen zum Thema Radikalische Substitution!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Stabilität der Radikale – Hyperkonjugation und Konjugation

Die radikalische Substitution verläuft über das stabilste Radikal. Die Stabilität der Radikale wird durch Hyperkonjugation und Konjugation bestimmt.

Was ist Hyperkonjugation?

Je größer die Anzahl der Kohlenstoffatome, die an ein C-Atom mit dem ungepaarten Elektron gebunden ist, desto stabiler ist dieses Radikal. Ein tertiäres Radikal ist also stabiler als ein sekundäres und dieses wiederum stabiler als ein primäres Radikal. Aber wieso ist das so? Je mehr Alkylgruppen um ein Kohlenstoffatom mit einem einzelnen, nicht bindenden Elektron gruppiert sind, desto größer wird die Möglichkeit der Hyperkonjugation. Unter Hyperkonjugation versteht man eine elektronische Wechselwirkung zwischen einem vollständig besetzten Orbital einer σ\sigma-Bindung (meist einer C-H- oder C-C-Bindung) und einem benachbarten unbesetzten oder einfach besetzten Molekülorbital. Die Überlappung dieser beiden Orbitale ermöglicht dann eine zusätzliche Delokalisierung der Elektronen aus der σ\sigma-Bindung – daraus resultiert eine zusätzliche Mesomeriestabilisierung.

Konjugation bei der radikalischen Substitution

Auch bei der radikalischen Substitution ist die Voraussetzung für die Konjugation das Vorhandensein von mindestens zwei Doppelbindungen. Wichtig ist dabei, dass sie nicht auseinander liegen, sondern nebeneinander, jeweils getrennt durch eine Einfachbindung. Die Konjugation kommt zustande, weil an jedem Kohlenstoffatom π\pi-Orbitale vorhanden sind, die in der gleichen Richtung angeordnet sind. Die Elektronen dieser Orbitale treten dann in Wechselwirkung. Diesen Effekt nennt man Konjugation. Diese Überlappung der π\pi-Orbitale bedeutet auch Delokalisierung der π\pi-Elektronen. Dadurch kommt es zu einer Stabilisierung des Systems.

Radikalische Substitution – Zusammenfassung

Die radikalische Substitution ist ein Reaktionsmechanismus der Chemie, bei der es zu einer Radikalkettenreaktion kommt. Dabei werden drei Schritte durchlaufen: die Startreaktion, die Kettenreaktion (Kettenfortpflanzung) und die Abbruchreaktion (Kettenabbruch). Ein Beispiel für eine radikalische Substitution ist die Halogenierung. Die radikalische Substitution erfolgt vorzugsweise an Aliphaten. Sie verläuft über das stabilste Radikal. Die Stabilität der Radikale wird durch Hyperkonjugation und Konjugation bestimmt.

Im Anschluss an das Video und diesen Text findest du Übungsaufgaben zur radikalischen Substitution, um dein erlerntes Wissen zu überprüfen. Viel Spaß!

Reaktionen der Alkane – radikalische Substitution Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Reaktionen der Alkane – radikalische Substitution kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.997

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.716

Lernvideos

37.370

Übungen

33.698

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden