Auswendiglernen mit dem Major-System
Das Majorsystem ist eine Gedächtnistechnik zur Steigerung der Merkfähigkeit von Zahlenfolgen durch die Zuordnung von Lauten zu Ziffern. Lerne diese Methode und verknüpfe Zahlen mit Bildern, um effektiver zu lernen. Interessiert? Das und vieles mehr findest du im folgenden Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Auswendiglernen mit dem Major-System
Das Major-System – Definition
Das Major‑System ist eine recht komplexe Gedächtnistechnik (Mnemotechnik), mit der man sich längere Zahlenfolgen merken kann. Die Anwendung erfordert ein wenig Übung. Hat man das System jedoch erst einmal verinnerlicht, kann es sehr effektiv genutzt werden.
Mithilfe des Major-Systems kannst du dir lange Zahlenfolgen besser merken. Das Major‑System basiert auf der Idee, Zahlen durch Laute auszudrücken. Aus den Lauten werden dann Wörter und ganze Sätze zusammengesetzt.
Sätze kann man sich im Gegensatz zu langen Zahlenfolgen viel leichter merken, da sie eine Bedeutung haben und gedanklich mit Bildern verknüpft werden.
Das Major‑System wird manchmal auch Mastersystem genannt – beide Bezeichnungen beruhen allerdings auf irrtümlichen Annahmen hinsichtlich der Herkunft dieser Gedächtnistechnik bzw. ihres Namens.
Historisch geht das Major‑System in seiner heutigen Form auf den französischen Mathematiker und Anwalt Aimé Paris zurück, der die Mnemotechnik im Jahr 1825 veröffentlicht hat. Die Idee, Zahlen und Buchstaben zu verknüpfen, ist zwar schon deutlich älter, aber seine Zuordnung von Zahlen und Lauten stellte eine entscheidende Verbesserung früherer Systeme dar und hat sich letztendlich durchgesetzt.
Das Major-System – Erklärung
Um das Major‑System zu verstehen, sehen wir uns zuerst die Zuordnung von Lauten und Ziffern an, die Amé Paris vorgeschlagen hat:
Ziffer | Laut(e) | Merkhilfe |
---|---|---|
$0$ | s, z, ß, ss, weiches c |
Das sind die Zischlaute. Das z ist der erste Buchstabe des englischen Wortes zero (Null). |
$1$ | t, d | Das t hat einen langen, vertikalen Strich wie eine Eins. |
$2$ | n | Das n hat zwei Beine. |
$3$ | m | Das m hat drei Beine. |
$4$ | r | Der letzte Buchstabe von vier ist ein r. |
$5$ | l | Eine Hand mit abgespreiztem Daumen sieht aus wie ein L und hat fünf Finger. |
$6$ | sch, weiches g, ch, j |
Sechs reimt sich auf Schecks. |
$7$ | k, ck, hartes g, hartes c | Ein K besteht aus zwei 7, die Rücken an Rücken stehen. Die 7 ist eine Glückszahl. |
$8$ | f, v, w, ph | Das Schreibschrift‑f hat zwei Schleifen, genau wie eine 8. |
$9$ | p, b | Ein p sieht aus wie eine gespiegelte 9. |
Rechts in der Tabelle findest du Hinweise, wie du dir die jeweilige Zuordnung von Ziffer und Laut(en) gut einprägen kannst.
Eine Zahlenfolge besteht aus mehreren Ziffern. Die zugehörigen Laute führen zu Buchstabenfolgen, aus denen sinnvolle Wörter gebildet werden können. Dazu werden einfach passende Vokale ergänzt. Betrachten ein paar Beispiele:
- Die Zahlenfolge $02$ entspricht den Lauten s und n. Daraus können wir zum Beispiel das Wort Sonne bilden.
- Auch das Wort Sahne würde die Zahlenfolge $02$ wiedergeben. Es gibt also mehrere Möglichkeiten. Das ist hilfreich, um aus ausgewählten Wörtern sinnvolle Sätze bilden zu können. So können auch sehr lange Zahlenfolgen ausgedrückt werden.
- Für Zahlenfolge $021$ wäre beispielsweise das Wort Sand ein passender Ausdruck.
- Damit man nicht jedesmal neu überlegen musst, kann man sich für die Zahlenpaare von $00$ bis $99$ auch eine Liste von Wörtern zurechtlegen. Wichtig ist dabei, dass man Wörter wählt, die mit konkreten Bildern verbunden werden können.
Ein paar typische Wörter bzw. Bilder für Zahlenpaare siehst du hier dargestellt:
Die Sonne und die Lupe sind klar, die Fackel hätte theoretisch auch für die Zahl $875$ stehen können, denn sie hat ja noch einen dritten Laut – das $l$. Das haben wir hier aber nicht gebraucht.
Denk dran, du kannst dir selbst aussuchen, welche Vokale (und damit welches Wort) du für eine bestimmte
Wieso fällt es mit dem Major‑System leichter, sich Zahlen zu merken?
Zahlenreihen haben für sich genommen keine Bedeutung. Du siehst beispielsweise einer neuen Telefonnummer nicht an, zu welcher Person sie gehört – es ist einfach nur eine Zahlenreihe.
Es fällt dem Gehirn schwer, sich Zahlenreihen zu merken, denn Zahlen sind abstrakt. Durch das Major‑System werden Zahlen mit Wörtern verknüpft.
Wörter wie Sonne oder Lupe haben immer eine Bedeutung – egal in welchem Zusammenhang, du hast immer ein klares Bild vor Augen, wenn du diese Wörter hörst.
Durch die Verknüpfung von Bild und Bedeutung kann dein Gehirn Wörter viel besser abspeichern als Zahlenreihen – erst recht, wenn sie einen sinnvollen Satz bilden. Dann musst du nur noch die Laute zurück in den Zahlencode übersetzen – schon hast du die Zahl, die du dir merken wolltest.
Das Major-System – Beispiel
Mit einem Beispiel wollen wir nun verdeutlichen, wie das Major‑System funktioniert.
Nehmen wir an, du möchtest dir eine vierstellige Zahl merken – zum Beispiel die PIN für dein Handy oder die Geheimzahl deines Bankkontos.
Angenommen, die Zahl lautet $4702$ – was wäre ein passendes Wort dafür im Major‑System?
- Die $4$ entspricht dem Laut r.
- Für $7$ können wir die Laute k oder ck wählen, oder auch ein hartes g oder hartes c – all diese Laute sind phonetisch miteinander verwandt.
- Auch für die $0$ gibt es mehrere Möglichkeiten, nämlich die Zischlaute s, z, ß, ss oder ein weiches c.
- Die $2$ entspricht dem n.
Wir brauchen also ein Wort, dessen erster Konsonant ein r ist und der letzte ein n – dazwischen muss ein k und ein s oder etwas Ähnliches sein. Eine Möglichkeit wäre der Name Erikson.
Das ist ein ziemlich ungewöhnliches Wort – umso besser, das kannst du dir bestimmt leicht merken! Du kannst dein inneres Bild von Erikson auch noch weiter ausschmücken, dann wird es noch einprägsamer – zum Beispiel mit folgender Beschreibung:
Der mächtige Erikson ist ein furchteinflößender Wikinger.
Allerdings war es gar nicht so leicht, mit der vorgegebenen Buchstabenkombination auf ein passendes Wort wie Erikson zu kommen. Und bei noch längeren Zahlenreihen ist das noch viel schwieriger!
Deshalb ist es eine gute Idee, die Zahlenreihe einfach auf zwei Zahlenpaare aufzuteilen und zwei Wörter zu bilden. Im Fall von $4702$ also zum Beispiel
- das Wort Rock für das Zahlenpaar $47$ und
- das Wort Zahn für das Zahlenpaar $02$.
Röcke und Zähne haben zwar auf den ersten Blick nichts miteinander zu tun, aber lass uns trotzdem einen Satz erfinden, der die zwei Wörter verbindet. Wie wär’s damit:
Rockstars haben schöne Zähne.
Der Satz ergibt Sinn – den kann man sich superleicht einprägen! Er enthält zwar auch Wörter, die nichts mit der Zahl $4702$ zu tun haben, aber das macht nichts. Wir wissen ja, dass es eine vierstellige Zahl sein muss – und welche der Wörter dafür wichtig sind, werden wir nicht so leicht vergessen.
Das ist genau der Vorteil des Major‑Systems: Bei Zahlen wie $4702$ kann es dir immer mal passieren, dass du zwei Zahlen verdrehst, z. B. versehentlich $4720$ eingibst, und dann vor lauter Aufregung nicht mehr weißt, was jetzt eigentlich die richtige Kombination war.
Das wird dir mit dem Satz Rockstars haben schöne Zähne nie im Leben passieren!
Du denkst an einen grinsenden Rockstar mit blitzenden Zähnen – der (oder die) sieht bestimmt nicht bei jedem gleich aus, aber das Bild prägt sich in jedem Fall ein.
Damit das funktioniert, musst du natürlich vorher auswendig lernen, welche Laute zu welchen Ziffern gehören – da kommst du leider nicht drumherum. Aber ist das erstmal geschafft, kannst du dir mit mehreren Sätzen auch deutlich längere Zahlenreihen merken – zum Beispiel Handynummern, Kontonummern oder Daten wichtiger Ereignisse.
Wenn sich Wörter und Sätze zu Geschichten zusammenfügen, kannst du dir das Ganze noch besser merken. Probier’s aus!
Übungsaufgabe:
Das Major-System – Anwendung
Mit dem Major‑System kannst du dir Zahlen und Zahlenreihen einprägen. Das kann eine Zahl sein, die in einem bestimmten Zusammenhang wichtig ist – zum Beispiel die Jahreszahl eines historischen Ereignisses. Oder eine Zahl, die du immer wieder mal brauchst, wie eine PIN oder eine andere Geheimzahl.
Es ist auch möglich, sich mit dem Major‑System die Reihenfolge bestimmter Informationen zu merken. Dafür bildest du Sätze, die sowohl die jeweilige Information als auch ein Wort für die zugehörige Zahl in der Reihe erhalten.
Angenommen, du möchtest lernen, welche die fünf größten Länder der Erde sind, aber du kannst dir beim besten willen nicht merken, ob jetzt die USA oder China an dritter Stelle liegen. Nimm diesen Satz:
Die Freiheitsstatue ist viel älter als meine Oma.
Die Freiheitsstatue steht in den USA. Und Oma (bzw. der Laut m) steht für die $3$.
Die USA liegt also vor China auf dem dritten Platz der flächengrößten Länder.
Solche Sätze kannst du für alle Länder bilden. Dann hast du zu jedem Land die passende Zahl in der Reihenfolge. Das ist auf den ersten Blick aufwendig und kompliziert – aber es ist viel effektiver und vor allem zuverlässiger, als sich die blanken Zahlen mit den Ländernamen zu merken.
Komplexe Kombinationen von Lerninhalten und zugehörigen Zahlen kannst du dir auch gut einprägen, indem du das Major‑System mit der Loci-Methode kombinierst. Die Loci‑Methode ist eine andere Mnemotechnik, bei der man Informationen mit Bildern von Orten oder Gegenständen verknüpft und diese dann gedanklich in einer bestimmten Reihenfolge durchläuft.
Die Wörter bzw. Bilder des Major‑Systems können einfach in die gedankliche Route der Loci‑Methode eingebaut werden. Das ist zugegebenermaßen recht aufwendig – aber dafür ist der langfristige Erinnerungseffekt umso größer!
Alternative zum Major-System – das Alphabet nutzen
Das Major‑System setzt voraus, dass du dir die zugehörigen Paare von Ziffern und Lauten und vielleicht auch schon einige Zahlenpaare und zugehörige Wörter einprägst. Das ist am Anfang ziemlich mühsam und scheint erstmal mehr Aufwand als Nutzen zu bringen. Das Major‑System wird erst so richtig effektiv, wenn du die gängigsten Kombinationen verinnerlicht hast und schnell auf passende Wörter und Sätze kommst.
Eine andere und deutlich simplere Möglichkeit ist es, einfach die Reihenfolge der Buchstaben des Alphabets zu nutzen – denn das ABC kannst du ja sicher schon!
Du kannst dir also Zahlenreihen merken, indem du einfach Wörter aneinander reihst, die mit den Anfangsbuchstaben beginnen, die mit ihrer Reihenfolge im ABC den einzelnen Ziffern entsprechen.
Für unser Beispiel $4702$ von oben wären das die Buchstaben $D$, $G$, $Z$ und $B$. (Wir haben hier jetzt einfach mal $Z$ für die $0$ genommen.) Daraus könnten wir folgenden Satz bilden:
Dein gelber Zahn beißt.
$4 \qquad 7 \qquad 0 \qquad 2$
Anfangsbuchstaben sind auch ein sehr nützliches Mittel, um komplexe Wortfolgen mit einem einfachen Bild zu verknüpfen. So kannst du dir beispielsweise die Phasen der Meiose (Prophase, Metaphase, Anaphase und Telophase) mit folgendem Satz merken:
Paul und Mina aßen Tortellini.
Das Bild von den beiden bei ihrem Date beim Italiener ist viel einprägsamer als die vier abstrakten Begriffe – die Anfangsbuchstaben lassen dich an die Begriffe denken und der Satz an ihre Reihenfolge.
Und damit sind wir schon nicht mehr bei Zahlen, es handelt sich eher um so etwas wie eine selbstgebaute Eselsbrücke.
Egal ob Major‑System, Loci‑Methode, Anfangsbuchstaben oder Eselsbrücken – die meisten Mnemotechniken und Gedächtnisstützen basieren auf der Idee, einen schwierigen Begriff, eine Zahl oder einen Zusammenhang durch ein Bild oder eine Geschichte auszudrücken.
Das hilft immer, denn unser Gehirn erinnert sich vor allem in Form von Bildern und Geschichten!
Zusammenfassung des Major-Systems
- Mithilfe des Major‑Systems kannst du Zahlen und Zahlenreihen auswendig lernen und sie dir langfristig merken. Das Major‑System gehört damit zu den Mnemotechniken.
- Das Major‑Systems funktioniert wie folgt:
Jede Ziffer einer Zahlenfolge steht für einen bestimmten Laut. Welche Ziffern und Laute zusammengehören, musst du dir einprägen.
Aus den Lauten kannst du Wörter und Sätze bilder, indem du geeignete Vokale ergänzt.
Welche Ziffern bzw. Laute du jeweils zu einem Wort gruppierst, bleibt dir überlassen. Üblicherweise bildet man einfache Wörter, die jeweils für ein Zahlenpaar stehen.
Es ist wesentlich leichter, sich ein Wort oder einen Satz zu merken, als eine Zahlenfolge, denn mit Wörtern verknüpfen wir Bilder und Bedeutungen. - Das Major‑System kann auch genutzt werden, um Informationen in eine Reihenfolge zu bringen oder Jahreszahlen zuzuordnen. In Kombination mit anderen Gedächtnistechniken wie der Loci‑Methode können auch komplexe Lerninhalte strukturiert und mit Zahlen verknüpft werden.
- Eine einfache Alternative zum Major‑System sind die Buchstaben des Alphabets – diese sind über ihre Reihenfolge bereits mit Zahlen verknüpft und können als Anfangsbuchstaben für hilfreiche Bilder oder Eselsbrücken verwendet werden.
Häufig gestellte Fragen zum Thema Auswendiglernen mit dem Major‑System
Auswendiglernen mit dem Major-System Übung
-
Beschreibe, wie das Major-System funktioniert.
TippsZwei der Aussagen sind korrekt.
In der deutschen Sprache sind die Konsonanten sinntragend. Das heißt, wir können die meisten Wörter – je nach Kontext – auch ohne Vokale lesen und verstehen.
Die Ziffern 0 bis 9 werden zehn verschiedenen Lauten zugeordnet. Laute, die sehr ähnlich gebildet werden, zum Beispiel „d“ und „t“, werden zusammengefasst und in diesem Sinne als ein Laut betrachtet.
LösungDas Major-System basiert auf der Grundidee, jeder Ziffer einen Konsonanten zuzuordnen. Aus den Konsonanten können dann Wörter und Sätze gebildet werden, indem beliebige Vokale eingefügt werden.
Es ist deutlich leichter, sich Wörter und Sätze zu merken, als tatsächliche Zahlenreihen.
Da es nur zehn Ziffern (0 bis 9) gibt, ist es nicht notwendig, jede Ziffer auf einen bestimmten Buchstaben festzulegen. Es ist sinnvoller, Gruppen von Konsonanten zu bilden, sodass manche Ziffern durch mehrere Konsonanten ausgedrückt werden können. Das macht es leichter, einprägsame Wörter und Sätze zu bilden.
Eine naheliegende Gruppierung der Konsonanten ist das Zusammenfassen von Lauten, die ähnlich gebildet werden und ähnlich klingen. Ein typisches Beispiel sind die Konsonanten d und t. -
Ordne den Zahlen passende Wörter zu.
TippsEin Doppelkonsonant wie das Doppel-n in Sonne zählt nur als ein Laut und entspricht damit auch nur einer Ziffer.
Der Konsonant h wie in Zahn wird im Major-System keiner Ziffer zugeordnet.
Die Konsonanten p und b stellen verwandte Laute dar und verweisen deshalb auf die gleiche Ziffer.
Ähnlich ist das auch bei einigen anderen Konsonanten.LösungBeim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
Daraus ergeben sich folgende Möglichkeiten:
$02 =$ Sonne, Zahn
$59 =$ Lupe, Laub
$86 =$ Fisch, WacheDie Konsonanten s und z, p und b, f und w sowie sch und ch sind jeweils austauschbar, weil es sich um ähnliche Laute handelt.
-
Entwirf einen Merksatz, der die Zahlenreihe 814 821 96 93 widerspiegelt.
TippsBeim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
LösungBeim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
Damit passt folgender Merksatz zu der Zahlenreihe $814\,821\,96\,93$:
Mein Vater liest bei starkem Wind ein dickes Buch unter einem Baum.
Vater $=814$
Wind $=821$
Buch $=96$
Baum $=93$ -
Erschließe, um welche Zahlen es sich handelt.
TippsEin Doppelkonsonant wie das Doppel-n in Sonne zählt nur als ein Laut und entspricht damit auch nur einer Ziffer.
Der Konsonant h wie in Hund wird im Major-System keiner Ziffer zugeordnet.
Beim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
LösungBeim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
Damit ergeben sich folgende Zahlenpaare:
Sonne $=02$
Hund $=21$
Baum $=93$
Schere $= 64$ -
Untersuche, welche Paare zusammengehören.
TippsDer Konsonant h wie in Handschuh wird im Major-System keiner Ziffer zugeordnet.
Die Konsonanten f, v und w stellen verwandte Laute dar und verweisen alle auf die gleiche Ziffer.
Ähnlich ist das auch bei einigen anderen Konsonanten.LösungBeim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
Damit ergeben sich folgende Zuordnungen:
Lupe $=59$
Wand $=821$
Handschuh $=216$
Pferd $=9841$ -
Überprüfe, welche Wörter eingefügt werden müssen, um die Zahlenreihe 02201458985740305 korrekt widerzuspiegeln.
TippsEin Doppelkonsonant wie das Doppel-n in Sonne zählt nur als ein Laut und entspricht damit auch nur ***einer Ziffer**.
Ausschließlich die Konsonanten n, m, r und l können jeweils eindeutig einer bestimmten Ziffer zugeordnet werden.
Beim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
LösungBeim Major-System ist folgende Zuteilung von Ziffern und Lauten üblich:
- $0 =$ s, z, ß, ss, oder weiches c
- $1 =$ t oder d
- $2 =$ n
- $3 =$ m
- $4 =$ r
- $5 =$ l
- $6 =$ ch, j, sch oder weiches g
- $7 =$ k, ck, hartes g oder hartes c
- $8 =$ f, v, w oder ph
- $9 =$ p oder b
Damit ergibt sich folgende Zuteilung von Wörtern und Zahlen:
Sonnenstrahl $= 0220145$
Wipfel $= 8985$
Gras $= 740$
Amsel $= 305$
Lerntechniken – wie man effektiver lernt
Lerntechniken und Lernstrategien fürs Verständnislernen
Textaufgaben verstehen und lösen
Mnemotechniken – Lernmethoden fürs Auswendiglernen
Tipps fürs Auswendiglernen
Texte leichter verstehen
Operatoren verstehen
Auswendiglernen mit dem Major-System
Auswendiglernen mit der Loci-Methode
Vokabeln lernen mit der Schlüsselwortmethode
Lernen mit Karteikarten
Einen Karteikasten basteln
8.875
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.856
Lernvideos
37.641
Übungen
33.758
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Lern- und Arbeitstechniken
- Prüfungsangst
- Prokrastination
- Lernstrategien Schule
- Was ist eine App?
- Podcast - Was ist das
- Mnemotechniken
- Textaufgaben
- Lernmethoden
- Karteikasten Basteln
- Entspannungsübungen für Kinder
- Auswendiglernen
- Schulstress - Was tun
- Konzentration steigern, Konzentrationsübungen
- Was sind Operatoren
- Im Schlaf Lernen
- Wie lernt das Gehirn
- Welche Lerntypen gibt es?
- Lernplan erstellen
- Textverständnis
- effektiv Lernen
- Lernmotivation
- Effektiv lernen
- Schlüsselwortmethode
- Wie entstehen Nachrichten
- Lernen durch Bewegung
- Was Passiert Bei Blackout Im Gehirn
- Medienkonsum
- To-Do-Liste Schüler
- Loci-Methode
- Lernübungen
- Was sind Fake News?
- Schulmobbing und Mobbing im Internet
- Was sind soziale Medien?
- PowerPoint Tricks
- Last-Minute-Lernen
- Major-System
- Vorbereitung Klassenarbeit
- Prüfungsvorbereitung Tipps
- Lernumgebung gestalten
- Präsentation vorbereiten
- Lernblockaden Lösen
- Wie schreibt man Notizen
- Gedächtnistraining Kinder
- Logisches Denken trainieren - Kinder
- Soziale Medien Vorteile & Nachteile
- Lernen mit Podcast
- Lernen mit Karteikarten
- Lernmethoden Visualisierung
- Einfluss von Medien auf das Gehirn
- Was kann man gegen Cybermobbing tun?