Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grenzwerte von Funktionen für x → xₒ – h-Methode

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Grenzwert Funktionen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 24 Bewertungen
Die Autor*innen
Avatar
Giuliano Murgo
Grenzwerte von Funktionen für x → xₒ – h-Methode
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Grenzwerte von Funktionen für x → xₒ – h-Methode

"h-Methode? Das kenne ich doch von der Ableitung." Genau. Bei den Ableitungen werden Grenzwertprozesse untersucht. Hier betrachten wir eine Funktion und ihr Verhalten bei einer Definitionslücke. Wir erstezen den Abstand zwischen x und x0 bei der Grenzwertbetrachtung für h und schreiben den Grenzwertprozess nach h um. Mit Hilfe dieser Methode kann man den Grenzwert ermitteln. Hierbei benötigst du die binomischen Formeln in der allgemeinen Form (a+b)n. Wenn du die binomischen Formeln aufgelöst hast, kürzt sich bestensfalls das h heraus und wir bekommen einen Grenzwert. Was sagt uns das jetzt? Ist x0 eine Polstelle oder eine hebbare Definitionslücke? Finde es heraus. Viel Spaß beim Lernen!

8 Kommentare
  1. Hallo adlerauge78,
    danke für deinen Kommentar. Wir arbeiten beständig an der Produktion neuer Videos. Über Rückmeldungen, welche Themen gewünscht sind, freuen wir uns sehr. Natürlich streben wir eine möglichst hohe Abdeckung an. Nun zu deiner Frage: Die Idee bei solchen Grenzwertbetrachtungen bei gebrochen rationalen Funktionen ist, die höchste Potenz in Zähler und Nenner auszuklammern. Dadurch kannst du die ausgeklammerte Potenz wegkürzen und den Rest betrachten, bei dem fast nur noch sogenannte "Nullfolgen" bleiben, die für x gegen ∞ dann also gegen 0 laufen.
    Probier das doch einfach mal aus, da wirst du sehen was noch übrig bleibt.
    Liebe Grüße aus der Redaktion

    Von Florian H., vor etwa 6 Jahren
  2. mmmh , gutes Video , aber mal angenommen ich habe jetzt folgende Aufgabe lim x→±∞ ((x²+3x+4) /(x²-5)) wie gehe ich da vor , wie wäre es mit einem Video ????

    Von Adlerauge78, vor etwa 6 Jahren
  3. Hallo Milutinovic Biljana,
    da hast du völlig Recht. An dieser Stelle hat der Tutor etwas gemacht, was formal nicht ganz richtig war. Einen inhaltlichen Fehler hat er dabei allerdings nicht gemacht, er hat nämlich die Summe beim Kürzen berücksichtigt. Ich erkläre es dir kurz:
    Der Zähler von (h³ + 3h² + h) /h hat in jedem Summenden den Faktor h. Daher können wir ein h ausklammern:
    (h³ + 3h² + h) /h = (h*h² + h* 3h + h*1) /h
    = h*(h² + 3h + 1) /h
    Nun haben wir ein Produkt im Zähler und können können kürzen:
    h*(h² + 3h + 1) /h = (h² + 3h + 1) /1 = h² + 3h + 1

    Was ich nun formal korrekt aufgeschrieben hab, hat der Tutor schneller, "umgangssprachlicher" im Video gemacht. In Klassenarbeiten sollte du es lieber weiterhin formal richtig aufschreiben. :)
    Liebe Grüße aus der Redaktion

    Von Jeanne O., vor etwa 6 Jahren
  4. bei minute 4:40 darf man doch eigentlich nicht kürzen weil im zähler eine summe steht?

    Von Milutinovic Biljana, vor etwa 6 Jahren
  5. Hallo Josi K.,
    bitte beschreibe genauer, was du nicht verstanden hast. Gerne kannst du dich auch an den Hausaufgaben-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können. Liebe Grüße aus der Redaktion.

    Von Jeanne O., vor mehr als 6 Jahren
Mehr Kommentare

Grenzwerte von Funktionen für x → xₒ – h-Methode Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grenzwerte von Funktionen für x → xₒ – h-Methode kannst du es wiederholen und üben.
  • Beschreibe das Vorgehen bei der Bestimmung von Grenzwerten von Funktionen durch die h-Methode.

    Tipps

    Welche Bedeutung hat bei der Grenzweltbetrachtung $\lim\limits_{x \to x_0}$ das $x_0$?

    Statt $x$ gegen $x_0$ gehen zu lassen, kann auch $x-x_0$ gegen 0 gehen.

    Lösung

    Die h-Methode ist eine Methode zur Bestimmung von Grenzwerten von Funktionen für $x\to x_0$ an einer Definitionslücke $x_0$. Dabei wird wie folgt vorgegangen:

    1. Bestimmung des Definitionsbereiches und der Definitionslücken
    2. Ersetzen von $x$: $x=h+x_0$
    3. Grenzweltbetrachtung von $\lim\limits_{h\to 0}$ statt $\lim\limits_{x \to x_0}$
    4. Anwenden von binomischen Formeln
    5. Kürzen von $h$ und Grenzwertberechnung

  • Bestimme den Grenzwert von $f(x)=\frac{x^3-2x+1}{x-1}$ an der Definitionslücke.

    Tipps

    Die Definitionslücke ist dadurch erklärt, dass an dieser Stelle die Funktion nicht definiert ist.

    Statt $x$ gegen $x_0$ gehen zu lassen, kann auch $h:=x-x_0$ gegen 0 gehen.

    Es gilt $(a+b)^3=a^3+3a^2b+3ab^2+b^3$.

    Lösung

    Die Definitionslücke der Funktion $f(x)=\frac{x^3-2x+1}{x-1}$ ist die Nennernullstelle, also $x_0=1$.

    Anstatt nun $x$ gegen $x_0$ gehen zu lassen, kann auch $h=x-x_0$ gegen 0 gehen. Also ist $x=x_0+h$ und in diesem Beispiel $x=1+h$.

    Der Grenzwert kann nun wie folgt berechnet werden:

    • Anstatt den Grenzwert $\lim\limits_{x \to x_0} \frac{x^3-2x+1}{x-1}$ zu bestimmen, wird der Grenzwert $\lim\limits_{h\to 0} \frac{(h+1)^3-2(h+1)+1}{h}$ betrachtet.
    • $(h+1)^3=h^3+3h^2+3h+1$. Also gilt mit Termumformungen, Kürzen von h und Anwendung der Grenzwertsätze für Summen:
    $\begin{align*} \lim\limits_{h\to 0} \frac{(h+1)^3-2(h+1)+1}{h}&= \lim\limits_{h\to 0} \frac{h^3+3h^2+3h+1-2h-2+1}{h}\\ &=\lim\limits_{h\to 0} \frac{h^3+3h^2+h}{h}\\ &=\lim\limits_{h\to 0} \frac{h(h^2+3h+1)}{h}\\ &=\lim\limits_{h\to 0} (h^2+3h+1)=1\\ \end{align*}$

  • Ermittle jeweils, wie x bei der Anwendung der h-Methode ersetzt wird.

    Tipps

    Bestimme jeweils die Definitionslücke.

    Bei der h-Methode wird der Grenzwert $x$ gegen $x_0$ ersetzt durch $h=x-x_0$ gegen 0.

    Lösung

    Die h-Methode ist ein Verfahren zur Bestimmung von Grenzwerten von Funktionen für $x \to x_0$ an einer Definitionslücke $x_0$. Hierbei wird wie folgt ersetzt: $x=x_0+h$. Somit kann der Grenzwert für $h\to 0$ betrachtet werden.

    • $\mathbf{\frac{x^4-x-2}{x+1}}$: Hier ist $x_0=-1$ und somit $x=-1+h=h-1$.
    • $\mathbf{\frac{x^3+1}{x-1}}$: Hier ist $x_0=1$ und somit $x=1+h=h+1$.
    • $\mathbf{\frac{x^4-16}{x+2}}$: Hier ist $x_0=-2$ und somit $x=-2+h=h-2$.
    • $\mathbf{\frac{x^2+2x-3}{x+3}}$: Hier ist $x_0=-3$ und somit $x=-3+h=h-3$.
  • Untersuche die Funktion $f(x)=\frac{x^3-8}{x-2}$ auf Konvergenz an der Definitionslücke.

    Tipps

    Es gilt $(a+b)^3=a^3+3a^2b+3ab^2+b^3$.

    Wenn der Grenzwert existiert, so lässt sich $h$ kürzen.

    Lösung

    Die Definitionslücke von $f(x)=\frac{x^3-8}{x-2}$ ist $x_0=2$. Statt den Grenzwert von $x$ gegen 2 zu betrachten, kann auch der von $h=x-2$ gegen 0 betrachtet werden. Dies führt zu der Ersetzung von $x$ durch $x=2+h$.

    $\begin{align*} \lim\limits_{h\to 0} \frac{(2+h)^3-8}{h}&= \lim\limits_{h\to 0} \frac{8+12h+6h^2+h^3-8}{h}\\ &=\lim\limits_{h\to 0} \frac{h^3+6h^2+12h}{h} \end{align*}$

    Hier wurde die Formel $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ mit $a=2$ und $b=h$ verwendet.

    $\lim\limits_{h\to 0} \frac{h^3+6h^2+12h}{h} =\lim\limits_{h\to 0} \frac{h(h^2+6h+12)}{h}$

    Nun kann $h$ gekürzt und der Grenzwert berechnet werden.

    $\lim\limits_{h\to 0} \frac{h(h^2+6h+12)}{h}=\lim\limits_{h\to 0} (h^2+6h+12)=12$.

  • Benenne die drei Verfahren zur Bestimmung von Grenzwerten von Funktionen für $x\to x_0$ mit Definitionslücke $x_0$.

    Tipps

    Es gibt Grenzwertsätze zur Berechnung von Grenzwerten, welche Aussagen darüber treffen, wie Grenzwerte von Summenfunktionen, Differenzfunktionen, Produktfunktionen und Quotientenfunktionen berechnet werden können.

    Der $\epsilon$-Schlauch wird zur Erklärung eines Grenzwertes betrachtet.

    Lösung

    Der Grenzwert einer Funktion an einer Definitionslücke kann berechnet werden, indem

    • man verschiedene $x$-Werte, welche sich dem $x_0$ nähern, in die Funktionsgleichung einsetzt. Das wird als Testeinsetzung bezeichnet.
    • man den Term, dessen Grenzwert berechnet werden soll, umformt. Dies geschieht zum Beispiel durch binomische Formeln oder durch Polynomdivision. Dabei handelt es sich um eine Termumformung.
    • man die Grenzwertbetrachtung $\lim\limits_{x \to x_0}$ ersetzt durch $\lim\limits_{h \to 0}$, wobei $h=x-x_0$ ist. Das ist unter dem Stichwort h-Methode bekannt.
    Egal, welches dieser Verfahren angewendet wird: Wenn es einen Grenzwert gibt, so lässt sich dieser mit jedem dieser Verfahren bestimmen.

  • Ermittle den Grenzwert der Funktion $f(x)=\frac{x^4-16}{x-2}$ an der Definitionslücke.

    Tipps

    Bestimme zunächst die Stelle $x_0$, wo die Funktion nicht definiert ist, und ersetze $x=x_0+h$.

    Es gilt $(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$.

    Es gilt $(2+h)^4=16+32h+24h^2+8h^3+h^4$.

    Lösung

    Zunächst wird die Definitionslücke bestimmt. Diese ist die Nennernullstelle, also $x_0=2$.

    Nun wird wie folgt ersetzt: $x=2+h$.

    In der Grenzwertberechnung $\lim\limits_{x \to 2} \frac{x^4-16}{x-2}$ wird $x \to 2$ durch $h \to 0$ ersetzt und $x$ wie oben angegeben:

    $\lim\limits_{h\to 0}\frac{(2+h)^4-16}{h}=\lim\limits_{h\to 0}\frac{16+32h+24h^2+8h^3+h^4-16}{h}$.

    Dies erhält man unter Verwendung der Formel $(2+h)^4=16+32h+24h^2+8h^3+h^4$. Der Term ohne $h$ fällt heraus und $h$ kann ausgeklammert werden:

    $\begin{align*} \lim\limits_{h\to 0}\frac{16+32h+24h^2+8h^3+h^4-16}{h}&=\lim\limits_{h\to 0}\frac{32h+24h^2+8h^3+h^4}{h}\\ &=\lim\limits_{h\to 0}\frac{h(32+24h+8h^2+h^3)}{h} \end{align*}$

    Nun wird $h$ gekürzt und somit der Grenzwert berechnet:

    $\lim\limits_{h\to 0}\frac{h(32+24h+8h^2+h^3)}{h}=\lim\limits_{h\to 0}(32+24h+8h^2+h^3)=32$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.906

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.866

Lernvideos

37.599

Übungen

33.716

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden