Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Umkehrfunktionen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Umkehrfunktionen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.2 / 34 Bewertungen
Die Autor*innen
Avatar
Team Digital
Umkehrfunktionen
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Umkehrfunktionen

Nach dem Schauen dieses Videos wirst du in der Lage sein, Umkehrfunktionen einer Funktion zu ermitteln.

Zunächst lernst du, wie du überprüfen kannst, ob es sich bei einem Graphen um eine Fuktion handelt. Anschließend lernst du, wie du eine Umkehrfunktion rechnerisch bestimmen kannst. Abschließend lernst du die Zusammenhänge zwischen der Funktion und ihrer Umkehrfunktion kennen.

Lerne etwas über Umkehrfunktionen, während du eine Reise in das Umkehruniversum begleitest.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Funktion, Graph, Umkehrfunktion und Funktionsgleichung.

Bevor du dieses Video schaust, solltest du bereits wissen, wie du eine Gleichung zu einer Funktion aufstellst.

Transkript Umkehrfunktionen

Vor nicht allzu langer Zeit in einer gar nicht mal so weit entfernten Galaxis haben der furchtlose Hans Olus und seine heldenhafte Crew Hinweise für die Reise ins geheimnisvolle Umkehruniversum gefunden. Um ins Umkehruniversum zu kommen, müssen sie zu einer gegebenen Funktion deren Umkehrfunktion herausfinden. Sie können ihren Sprungantrieb nur aktivieren, wenn Funktion und Umkehrfunktion exakt zusammenpassen. Doch die Crewmitglieder wissen nicht, was eine Umkehrfunktion ist und wie man sie ermittelt. Wir erinnern uns: Bei einer Funktion f(x) wird jedem x-Wert genau ein y-Wert zugeordnet. Einfach gesagt dreht eine Umkehrfunktion die ursprüngliche Funktion um. Anders ausgedrückt: Bei einer Umkehrfunktion werden die x- und y-Werte der Ausgangsfunktion vertauscht. Bei Punkten ist so eine Umkehrung ganz simpel: Du vertauscht einfach die x- und y-Koordinaten. Ist beispielsweise der Punkt P (5|3), gegeben, hat die Umkehrung, P hoch -1, die Koordinaten (3|5). Ganz leicht, oder? Eine Umkehrfunktion zu ermitteln ist auch nur ein klein wenig komplizierter. Zuerst solltest du mit Hilfe einer senkrechten Geraden testen, ob ein Graph überhaupt eine Funktion darstellt. Stell dir eine Parallele zur y-Achse vor. Wenn diese Gerade den Graphen bei jedem x-Wert nur in genau einem Punkt schneidet, gehört der Graph zu einer Funktion. Wenn der Graph den Test nicht besteht, stellt er auch keine Funktion dar. Besteht der Graph dieser Gleichung hier den Test? Der Graph dieser linearen Gleichung besteht den Test: Es gibt immer nur einen einzigen Schnittpunkt mit der senkrechten Gerade. Daher ist sie eine lineare Funktion und wir können" f(x)" statt "y" schreiben. Ob die Umkehrung ebenfalls eine Funktion ist, prüfen wir zudem mit einer waagerechten Gerade. Wird diese lineare Funktion den Test bestehen? Sieht gut aus! Wir wissen nun, dass diese Funktion eine Umkehrfunktion hat. Aber wie finden wir sie? Wir können das rechnerisch mit ein paar einfachen Schritten lösen. Hans Olus und sie Crew müssen die Umkehrfunktion von f(x) = 3x - 6 finden. Zuerst ersetzen wir f(x) durch y. Dann tauschen wir in der Funktion jedes x durch ein y und jedes y durch ein x aus. Und jetzt? Du hast es vielleicht schon vermutet: Wir müssen einfach wieder nach y umstellen. Meine Damen und Herren, dürfen wir vorstellen, unsere erste Umkehrfunktion! Es gibt übrigens einen spannenden Zusammenhang zwischen Funktion und Umkehrfunktion: y=x ist immer die Spiegelachse, die die Graphen aufeinander abbildet. Umkehrfunktionen schreibt man auf diese Weise. Man liest sie so: f hoch -1 von x. Wenn wir in die Ausgangsfunktion für x die Werte 0, 1, 2, 3, 4 und so weiter einsetzen erhalten wir folgende y-Werte. Setzen wir diese Werte in die Umkehrfunktion für x ein, sollten die ursprünglichen x-Werte herauskommen. Probieren wir es aus! Die y-Werte unserer Ausgangsfunktion sind -6, minus 3, 0, 3 und 6. Wir setzen sie für x in die Umkehrfunktion ein und erhalten 0, 1, 2, 3 und 4! Wie du siehst, sind die x- und y- Werte der ursprünglichen und der Umkehrfunktion "umgekehrt". Um die Umkehrfunktion f hoch minus 1 einer Funktion f(x) nach erfolgreicher Prüfung durch vertikale und horizontale Geraden zu finden, ersetzt du also erst f(x) durch y. Dann änderst du alle "x" in "y" und anders herum. Nun kannst du die Gleichung nach y umstellen. Am Ende ersetzt du "y" durch die Notation für die Umkehrfunktion, f hoch minus 1 von x. Mit diesen Erkenntnissen kann Hans Olus endlich den Sprungantrieb programmieren und das Schiff ins Umkehruniversum fliegen. Oh nein, was ist passiert? Offenbar werden im Umkehruniversum nicht nur Funktionen umgekehrt.

1 Kommentar
  1. Cool

    Von Jonas, vor 9 Monaten

Umkehrfunktionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Umkehrfunktionen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.152

sofaheld-Level

6.601

vorgefertigte
Vokabeln

8.069

Lernvideos

37.109

Übungen

33.424

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden