Haus der Vierecke – Einführung
Im Haus der Vierecke sind die verschiedenen Vierecksarten nach ihren Eigenschaften geordnet, wobei die Eigenschaften von unten nach oben vererbt werden. Lerne die Besonderheiten jedes Vierecks kennen und finde heraus, warum das Quadrat die höchste Symmetrie besitzt. Neugierig geworden? All das und noch mehr wartet auf dich im nachfolgenden Text.
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Haus der Vierecke – Einführung Übung
-
Beschreibe das Funktionsprinzip des Hauses der Vierecke.
TippsIm Keller wohnt das am wenigsten spezielle Viereck und direkt unter dem Dach wohnt das Viereck mit allen Spezialeigenschaften.
Das Quadrat vereint die Eigenschaften einer Raute und eines Rechtecks.
LösungVierecke haben $4$ Eckpunkte, $4$ Seiten und eine Innenwinkelsumme von $360^\circ$. Diese drei Eigenschaften treffen tatsächlich auf alle Vierecke zu. Doch einige Vierecke haben noch weitere Besonderheiten.
Im Haus der Vierecke sind alle Typen von Vierecken nach ihren Eigenschaften wie folgt angeordnet:
- Ein Viereck in einem höheren Stockwerk besitzt mehr Besonderheiten als die Vierecke in den darunterliegenden Etagen.
- Ein Viereck besitzt mindestens alle besonderen Eigenschaften von seinen unteren Nachbarn.
Demnach wohnt im Keller also das am wenigsten spezielle Viereck, nämlich das allgemeine Viereck. Direkt unter dem Dach wohnt das Viereck mit allen Spezialeigenschaften, also das Quadrat.
-
Gib die Eigenschaften der Vierecke bezüglich der Parallelität ihrer Seiten an.
TippsHier siehst du in der ersten Reihe von links nach rechts folgende Vierecke:
- Drachenviereck
- Quadrat
- Trapez
- Parallelogramm
- Rechteck
- symmetrisches Trapez
- Raute
- allgemeines Viereck
Die Eigenschaft „mindestens ein Paar parallele Seiten“ trifft auch auf Vierecke mit zwei Paar paralleler Seiten zu.
LösungWir können den Vierecken folgende Eigenschaften bezüglich der Parallelität ihrer Seiten zuordnen:
- Das Trapez hat eine besondere Eigenschaft, nämlich genau ein Paar parallele Seiten.
- Das Drachenviereck kann keine Parallelen vorzeigen.
- Beim Parallelogramm sind zwei gegenüberliegende Seiten jeweils gleich lang und parallel.
- Das symmetrische Trapez hat ein Paar parallele und ein Paar gleich lange Seiten.
- Die Raute hat zwei Paar parallele Seiten. Zudem sind alle Seiten gleich lang.
- Beim Rechteck sind alle Winkel rechtwinklig. Gegenüberliegende Seiten sind jeweils parallel und gleich lang.
- Das Quadrat hat ebenfalls nur rechte Winkel und zwei Paar parallele Seiten. Zudem sind beim Quadrat alle Seiten gleich lang.
-
Arbeite die Eigenschaften der Vierecke bezüglich ihrer Diagonalen heraus.
TippsDie Diagonalen eines Vierecks erhältst du, indem du die gegenüberliegenden Ecken jeweils miteinander verbindest.
LösungDu kannst die Eigenschaften der Vierecke bezüglich ihrer Diagonalen sehr übersichtlich in einer Tabelle zusammenfassen. Du erhältst dann folgende Tabelle:
$\begin{array}{l|c|c|c} & \text{gleich lang} & \text{beide halbieren} & \text{genau eine} \\ & & \text{sich} & \text{wird halbiert} \\ \hline \text{Quadrat} & \checkmark & \checkmark & \\ \hline \text{Rechteck} & \checkmark & \checkmark & \\ \hline \text{Raute} && \checkmark & \\ \hline \text{symmetrisches Trapez} & \checkmark && \\ \hline \text{Parallelogramm} && \checkmark & \\ \hline \text{Drachenviereck} &&& \checkmark \\ \hline \text{Trapez} &&& \\ \hline \text{allgemeines Viereck} &&& \\ \end{array}$
Demnach sind folgende Aussagen korrekt:
- „Das symmetrische Trapez hat zwei gleich lange Diagonalen.“
- „Das Parallelogramm hat zwei Diagonalen, die sich gegenseitig halbieren.“
- „Das Rechteck hat zwei gleich lange Diagonalen, die sich gegenseitig halbieren.“
- „Die Raute hat zwei gleich lange Diagonalen, die sich gegenseitig halbieren.“ Die Raute hat die Besonderheit, vier gleich lange Seiten zu besitzen. Aus dieser Eigenschaft resultiert nicht, dass die Diagonalen gleich lang sind.
- „Beim Drachenviereck wird genau eine der gleich langen Diagonalen halbiert.“ Tatsächlich wird bei einem Drachenviereck genau eine Diagonale halbiert, da es nämlich achsensymmetrisch zu der jeweils anderen Diagonalen ist. Allerdings sind die beiden Diagonalen nicht gleich lang.
-
Erschließe die Symmetrie- und Winkeleigenschaften der Vierecke.
TippsEin Quadrat hat vier gleich lange Seiten. Seine Diagonalen sind ebenfalls gleich lang und halbieren sich gegenseitig.
Eine Raute ist ein Parallelogramm mit vier gleich langen Seiten. Gegenüberliegende Seiten sind je parallel zueinander.
LösungWir betrachten nun alle Eigenschaften der Vierecke Quadrat, Raute und symmetrisches Trapez.
Quadrat
Das Quadrat besitzt vier gleich lange Seiten und vier rechte Winkel. Demnach sind:
- ... gegenüberliegende Winkel gleich groß.
- ... benachbarte Winkel gleich groß
- ... alle Winkel gleich groß.
Raute
Die Raute besitzt vier gleich lange Seiten. Demnach sind:
- ... gegenüberliegende Winkel gleich groß.
symmetrisches Trapez
Beim symmetrischen Trapez sind zwei gegenüberliegende Seiten parallel sowie die anderen beiden Seiten gleich lang. Demnach sind:
- ... benachbarte Winkel gleich groß.
-
Vervollständige das Haus der Vierecke.
TippsDas Rechteck erbt die Eigenschaften des Parallelogramms und des symmetrischen Trapezes.
Das Quadrat besitzt alle Besonderheiten.
Hier siehst du, in welchen Räumen das Rechteck und das Trapez wohnen.
LösungWir merken uns: Gehen wir im Haus der Vierecke ein Stockwerk nach oben, nehmen wir die Eigenschaften der Vierecke mit. Umgekehrt gilt das aber nicht:
Dachgeschoss
- Das Quadrat hat vier gleich lange Seiten, vier rechte Winkel und zwei gleich lange Diagonalen, die sich gegenseitig halbieren. Damit besitzt es alle Besonderheiten. Daher ist es direkt unter dem Dach platziert.
- Bei den Vierecken im Stockwerk darunter fehlt jeweils eine Eigenschaft: Die Raute hat vier gleich lange Seiten und zwei senkrecht stehende Diagonalen, die sich gegenseitig halbieren. Es hat aber keine vier rechten Winkel. Das Rechteck hat vier rechte Winkel und zwei gleich lange Diagonalen, die sich gegenseitig halbieren. Es hat aber keine vier gleich langen Seiten.
- Die unteren Nachbarn des Rechtecks sind das Parallelogramm und das symmetrische Trapez. Diese haben jeweils eine Eigenschaft weniger als das Rechteck. Das Parallelogramm hat keine rechten Winkel und das symmetrische Trapez besitzt nur ein Paar paralleler, gleich langer Seiten.
- Die unteren Nachbarn der Raute sind das Parallelogramm und das Drachenviereck. Auch diese haben jeweils eine Eigenschaft weniger als das Drachenviereck. Das Parallelogramm hat nicht vier gleich lange Seiten und beim Drachenviereck wird nur eine Diagonale durch die andere halbiert.
- Der untere Nachbar des Parallelogramms und des symmetrischen Trapezes ist das Trapez. Es besitzt eine Eigenschaft weniger als das symmetrische Trapez, nämlich die gleich langen Diagonalen, und eine Eigenschaft weniger als das Parallelogramm, nämlich die zwei Paar parallelen Seiten.
- Hier wohnt nun das Viereck, das keine besonderen Eigenschaften bis auf seine vier Ecken aufweist.
-
Entscheide, welche Vierecke die jeweiligen Kombinationen mindestens ergeben.
TippsFasse alle Eigenschaften zusammen und überlege, welches Viereck diese Eigenschaften hat. Manchmal können mehrere Vierecke zutreffen, wähle dann das Viereck mit den wenigsten Besonderheiten.
Wäre zum Beispiel ein Viereck mit vier rechten Winkeln gesucht, so käme das Quadrat und Rechteck in Frage. Aber das Quadrat hat zusätzlich noch vier gleich lange Seiten, also hat das Rechteck weniger Besonderheiten.
LösungWir suchen hier eigentlich jeweils den nächsten oberen Nachbar im Haus der Vierecke. Wir erhalten:
- Vereint man die Eigenschaften eines Parallelogramms und symmetrischen Trapezes, so erhält man mindestens das Rechteck.
- Die Eigenschaften eines Parallelogramms und Drachenvierecks ergeben zusammen mindestens eine Raute.
- Die Raute mit vier gleich langen Seiten und das Rechteck mit vier rechten Winkeln liefern zusammen das Quadrat.
- Ein symmetrisches Trapez, das zusätzlich gleich große gegenüberliegende Winkeln hat, ist mindestens ein Parallelogramm.
8.982
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.713
Lernvideos
37.352
Übungen
33.680
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Brüche multiplizieren – Übungen
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen