Sinussatz und Cosinussatz – Übungen
Der Sinussatz ist eine wichtige Formel, um Seitenlängen und Winkel in Dreiecken zu berechnen. Mit der Formel kannst du fehlende Größen herausfinden. Interessiert? Das und vieles mehr erfährst du in diesem Beitrag!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Sinussatz und Cosinussatz – Übungen
Der Sinussatz und der Cosinussatz sind wichtige Werkzeuge in der Trigonometrie, um unbekannte Seiten und Winkel in Dreiecken zu berechnen.
Mit diesen Sätzen kannst du sowohl in rechtwinkligen als auch in beliebigen Dreiecken arbeiten. Sie sind unverzichtbar für die Lösung vieler geometrischer Probleme und werden dir in der Mathematik immer wieder begegnen.
In unserer Übersicht zu Sinussatz und Cosinussatz findest du die wichtigsten Regeln und Beispiele einfach erklärt.
Transkript Sinussatz und Cosinussatz – Übungen
Piet ist für 3 Leuchttürme verantwortlich: Alter Anleger, Blaue Bucht und Cap Capri. Gerade hat Piet, der Leuchtturmwärter, bemerkt, dass einer seiner 3 Leuchttürme ausgefallen ist. Die Situation ist brenzlig und Piet muss schnell handeln. Zu allem Übel zieht ausgerechnet jetzt dichter Nebel auf. Wie soll er bei diesem Wetter zum Leuchtturm finden? Nun, ganz einfach. Für die Kursberechnung nutzt Piet den Sinus- und Cosinussatz.
Cosinussatz - Erklärung
Sind 2 Seiten und ein Winkel oder 3 Seiten eines nicht-rechtwinkligen Dreiecks bekannt, hilft dir der Cosinussatz weiter. Da Piet die Entfernungen zwischen den Leuchttürmen aus dem FF kennt, muss er nur den Winkel berechnen, um sein Boot auf Kurs zu bringen. Sehen wir uns mal die Formeln an. Wenn du genauer hinschaust, siehst du, dass sie dem Satz des Pythagoras sehr ähneln. Nehmen wir das mal genauer unter die Lupe. Kommt dir der erste Teil der Gleichung bekannt vor? Genau! Das ist der Satz des Pythagoras! Kannst du ein Muster erkennen? Um zum Cosinussatz zu kommen, ziehen wir das Produkt des Cosinus des Winkels, der der gesuchten Seite gegenüberliegt, sowie 2 Mal das Produkt der beiden anderen Seiten vom Satz des Pythagoras ab. Aber welche der Formeln verwenden wir jetzt?
Cosinussatz - Berechnung
Da Alpha die gesuchte Größe ist, können wir diese Formel nutzen, müssen sie aber zuerst nach Cosinus von Alpha umstellen. Wir subtrahieren b² und c²... und wir teilen durch -2bc auf beiden Seiten der Gleichung. Nun ist Cosinus Alpha isoliert. Piets Wissen nach beträgt die Entferung zwischen der Blauen Bucht und Cap Capri 5,18 km, zwischen Cap Capri und dem Alten Anleger 9 km und zwischen Alter Anleger und der Blauen Bucht 6 km. Er setzt diese Zahlen in den Cosinussatz ein. Cosinus hoch -1 ist der Arcus-Cosinus, also die Umkehrung des Cosinus'. Wir nutzen ihn, um Alpha zu isolieren. Wir setzen die Werte für a, b und c ein und lösen mit dem Taschenrechner. Super! Mit dem richtigen Kurswinkel kann sich Piet jetzt auf den Weg zum Cap Capri machen. Oh nein...die neue Glühbirne ist über Bord gegangen. Um Ersatz zu holen muss Piet zur Blauen Bucht fahren. Aber nun muss er den Kurs von der Blauen Bucht zum Cap Capri berechnen. Piet kann mit dem Cosinussatz den Winkel Beta berechnen, aber da er die Entfernungen und einen der Winkel kennt, kann er jetzt auch den Sinussatz verwenden.
Sinussatz - Erklärung
Schau dir die Formel an. Die Variablen im Zähler geben die Länge der 3 Seiten a, b und c an, im Nenner steht der Sinus DES Winkels, der der jeweiligen Seite gegenüberliegt. Natürlich kannst du die Formel auch umdrehen. Verwende einfach die Variante, mit der sich die gesuchte Größe am leichtesten finden lässt. Berechnen wir Winkel Beta mit den bekannten Größen.
Sinussatz - Berechnung
Winkel Alpha und alle Seiten sind bekannt. Nun stellen wir nach Beta um: Wir multiplizieren mit b. Anschließend nutzen wir wieder die Umkehrung der trigonometrischen Funktionen, hier den Arcus-Sinus, um den Winkel Beta zu isolieren. Zum Schluss lösen wir mit dem Taschenrechner. Gut, jetzt kann es aber wirklich losgehen...doch im Nebel erspäht er...eine Meerjungfrau? Ach, ein KLEINER Umweg hat noch niemandem geschadet... Oops. DAS ist keine Meerjungfrau...
Sinussatz und Cosinussatz – Übungen Übung
-
Bestimme den Winkel mithilfe des Cosinussatzes für Piets Navigation.
-
Berechne den Winkel mit dem Sinussatz für Piets Fahrt zum Cap Capri.
-
Bestimme die passende Gleichung mithilfe des Cosinussatzes.
-
Finde den Winkel, den Piet braucht, um zur Insel von Nils zu gelangen.
-
Prüfe, welche Formeln zum Cosinussatz fehlerfrei aufgeschrieben wurden.
-
Ermittle die Winkel, welche potenzielle neue Positionen für Leuchttürme darstellen.
9.226
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.137
Lernvideos
38.597
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
Ich schreibe morgen Mathe und dieses Video hat mir gerade das Leben gerettet.
Einbiischen zu viel überflüssige Sachen
mein Lieblings Video
@Tobib1992: Das Ergebnis der Rechnung in dem Video ist korrekt. Du scheinst einen Rechenfehler gemacht zu haben. Berechne den Zähler und den Nenner getrennt voneinander und berechne dann den Quotienten. Anschließend berechnest du den Arkus-Cosinus von deinem Ergebnis. Dann solltest du auf den entsprechenden Winkel von rund 33,4° kommen.
Wie wird der Winkel bei 2:30 Minuten genau berechnet?
wenn ich das in den Rechner eingebe, bekomme ich 83,7 Grad raus.