Besondere Vierecke mit Vektoren bestimmen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Besondere Vierecke mit Vektoren bestimmen
Es gibt viele verschiedene Vierecke mit besonderen Eigenschaften. Welche davon kennst du noch? Du kennst sicher das Quadrat, das Rechteck und bestimmt auch das Parallelogramm. Weißt du auch, was eine Raute ist oder was eine Raute von einem Parallelogramm unterschedet? Was sind die besonderen Eigenschaften eines Drachen oder eines Trapez. Im Abitur kommen immer wieder Aufgabenstellungen vor, wie zum Beispiel: „Weisen Sie nach, dass das Viereck, welches durch die Punkte A, B, C, D gegeben ist, ein Trapez ist.“ In diesem Video zeige ich dir, wie du mit Hilfe der Vektorrechnung einen solchen Nachweis durchführen kannst. Solltest du Fragen oder Anregungen haben, so freue ich mich über Kommentare von dir. Bis bald, Frank.
Transkript Besondere Vierecke mit Vektoren bestimmen
Hallo, mein Name ist Frank. In diesem Video werde ich dir zeigen, wie du besondere Vierecke mit Vektoren nachweisen kannst, also die Eigenschaften von besonderen Vierecken. Das ist eine Aufgabenstellung, die im Rahmen einer Geometrieaufgabe im Abitur gerne einmal so als Teilaufgabe gestellt wird. Und ich fange einfach einmal an, hier links mit dem sogenannten Haus der Vierecke. Da kannst du die verschiedenen Vierecke darin sehen und kannst auch noch einmal wiederholen und schauen, ob du die alle noch kennst. Also ganz oben siehst du ein Quadrat. Ein Quadrat ist ein spezielles Rechteck mit vier gleich langen Seiten. Und dann haben wir auch schon das Rechteck. Und die vier gleich langen Seiten, das könnte auch eine Raute sein, nur hat die Raute keine rechten Winkel. Und wenn wir jetzt noch einmal diese gleich langen Seiten herausnehmen, dann nur noch die Parallelität gegenüberliegender Seiten, haben wir ein Parallelogramm, darunter dann ein Trapez, erst einmal ein symmetrisches Trapez und ein Drachen. Und diese Pfeile, die du da siehst, diese grünen Pfeile, sagen immer, die entsprechenden Vierecke sind auch das, also ein Parallelogramm wäre auch ein Trapez. Und ein Rechteck wäre auch ein symmetrisches Trapez. Das kannst du an diesen Pfeilen erkennen. Dann haben wir unten ein Trapez, das hat die Eigenschaft, dass zwei gegenüberliegende Seiten parallel sind und ganz unten ganz allgemein ein Viereck, das einfach irgendwie aussieht. Und ich werde jetzt anhand von einigen Beispielen dir mit Hilfe von Vektoren zeigen, wie du solche Eigenschaften nachweisen kannst. So, ich beginne mit dem Beispiel eines Parallelogramms. Beim Parallelogramm müssen die gegenüberliegenden Seiten parallel sein, das heißt, ich muss jetzt wieder ein paar Verbindungsvektoren berechnen. Und damit ich überhaupt weiß, welche Verbindungsvektoren ich berechnen muss, gehe ich der Einfachheit halber davon aus, dass die Ecken des Vierecks entgegen des Uhrzeigersinns bezeichnet sind, also so, wie es hier angedeutet, ABCD. Das muss jetzt nicht so aussehen, das A könnte auch da sein, ABCD, aber nur, damit du weißt, dass du diese Verbindungsvektoren berechnen musst. Ansonsten kannst du dir eigentlich theoretisch alle Verbindungsvektoren berechnen, wenn du nicht weißt, wo die Punkte liegen. Das heißt also bei dem Beispiel, ich schaue mir den Verbindungsvektor AB an. Der ist gerade 3 - 1 = 2, 1 - 1 = 0, 3 - 2 = 1. AB = (2, 0, 1). Dann schaue ich mir den Verbindungsvektor AD an. Der ist 0 - 1 = -1, 3 - 1 = 2, 0 - 2 = -2. AD = (-1, 2, -2). Dann schaue ich mir den Verbindungsvektor BC an. Also die Reihenfolge ist egal. Du musst halt nur diese vier Verbindungsvektoren hier betrachten, also BC wäre 2 - 3 = -1, 3 - 1 = 2, 1 - 3 = -2. BC = (-1, 2, -2). Und zu guter Letzt noch den Verbindungsvektor, welcher fehlt mir noch? DC, und der ist gerade 0-2, Entschuldigung DC, also 2 - 0 = 2, 3 - 3 = 0 und 1 - 0 = 1. DC = (2, 0, 1) Und du siehst die Verbindungsvektoren AB und DC, also diese beiden hier, gut, in dem Bild jetzt natürlich nicht, sind identisch. Und genauso sind die Verbindungsvektoren AD und BC identisch. Und das heißt für die entsprechenden Seiten, dass die parallel sein müssen. Und das siehst du hier schon einmal in einem ersten Bild eines Parallelogramms. Und die entsprechenden parallelen Seiten sind jetzt farbig markiert. Ich nehme es und tue das hier oben hin zum Parallelogramm. Also wir haben nachgewiesen, dass in diesem Beispiel ein Parallelogramm vorliegt. Nun schaue ich mir ein weiteres Beispiel an. Ich überprüfe, ob das nächste Feld, das ich vorgebe, ob das ein Rechteck ist. also die Punkte A(1|2|1), B(3|2|1), C(1|1|4) und D(-2|1|4). Und wenn ein Rechteck vorliegen soll, das hatte ich vorhin bei dem Haus der Vierecke schon gezeigt, dann müssen auf jeden Fall die vier gegenüberliegenden Seiten parallel sein. Und das schaue ich jetzt wieder, genau wie hier. Also bestimmen wir die Verbindungsvektoren AB genau wie im vorherigen Beispiel, 3 - 1 = 2, 2 - 2 = 0, 1 - 1 = 0. AB = (2, 0, 0). Dann AD -2 - 1 = -3, 1 - 2 = -1, 4 - 1 = 3. AD = (-3, -1, 3). Dann BC, also wie jetzt oben auch, 1 - 3 = -2, 1 - 2 = -1, 4 - 1 = 3. BC = (-2, -1, 3). Wie in dem vorigen Beispiel schon gesehen, die beiden müssten identisch sein. Das sind sie hier nicht. Also ich könnte jetzt eigentlich schon aufhören. Ich bestimme jetzt einmal der Vollständigkeit halber noch den Verbindungsvektor DC, und der wäre 1 - (-2) = 3, 1 - 1 = 0, 4 - 4 = 0. DC = (3, 0, 0). Und du siehst, diese Vektoren sind nicht identisch. Also ist das auf jeden Fall schon einmal kein Parallelogramm. Und wenn es kein Parallelogramm ist, kann es natürlich auch kein Rechteck sein. Wenn es ein Parallelogramm wäre, müssten wir zusätzlich noch einen rechten Winkel nachweisen. Das brauchen wir jetzt hier nicht, weil es ja, wie gesagt, schon kein Parallelogramm ist. Das Bild dazu siehst du jetzt hier. Und du kannst jetzt farbig erkennen, dass keine gegenüberliegenden Seiten parallel sind. Und deswegen haben wir kein Rechteck. Ich mache das hier kleiner und lass das hier. Abschließend werde ich noch ein drittes Beispiel betrachten und ja, dann wären wir soweit fertig. So, jetzt komme ich zu dem abschließenden Beispiel. Also ich habe hier die Punkte schon einmal angeschrieben, wieder ein Viereck. Und ich möchte überprüfen, ob es sich bei diesem Viereck um ein Drachen handelt. Und wenn du noch einmal an dieses Haus der Vierecke denkst, hat der Drachen die Eigenschaft, dass die Diagonalen senkrecht aufeinander stehen. Und die Diagonalen, da kannst du jetzt wieder dieses Planviereck hernehmen, sind die Strecke von A nach C und von B nach D. Also brauche ich zuerst einmal die beiden Verbindungsvektoren AC, also 1 - 3 = -2, 3 - 1 = 2, 4 - 2 = 2. AC = (-2, 2, 2). Und BD, also auch da wieder, ich gehe jetzt wieder davon aus, dass dieses Viereck entsprechend bezeichnet ist. Ansonsten weiß ich ja nicht, welche Punkte diagonal gegenüber liegen. BD ist: 4 - 1 = 3, 4 - 1 = 3, 3 - 3 = 0. BD = (3, 3, 0). Und senkrecht aufeinander stehen, heißt, das Skalarprodukt der beiden Vektoren muss 0 sein, also AC∙BD = -6 + 6 + 0 = 0. Also haben wir die Orthogonalität, also einen rechten Winkel, den die beiden Diagonalen bilden. Und jetzt müssen wir für den Drachen noch zeigen, dass dann, wenn hier diese Diagonalen wären, dass dann diese beiden Seiten gleich lang sind. Und wenn die beiden gleich lang sind, sind natürlich auch diese gleich lang. Also ich mache jetzt den Nachweis über AD, auch da wieder, ich brauche den entsprechenden Verbindungsvektor, AD: 4 - 3 = 1, 4 - 1 = 3, 3 - 2 = 1. AD = (1, 3, 1). Und dann noch AB, nein in dem Fall DC schaue ich mir an. Also ich hätte auch AB machen können, dann würde ich feststellen, dass die nicht gleich lang sind, weil, wenn du hier schaust, wenn du von A ausgehst, könnten ja die beiden gleich lang sein oder die beiden. Ich weiß das schon, dass die beiden gleich lang sind, deswegen nehme ich die beiden. DC wäre also C-Vektor 1 - 4 = -3, 3 - 4 = -1, 4 - 3 = 1. Von diesen beiden brauche ich wieder die Längen, also den Betrag. Und für den Betrag eines Vektors muss ich einfach nur jede einzelne Komponente quadrieren, also den Vektor mit sich selbst multiplizieren, 12 + 32 +12 = 11 und daraus die Wurzel. (-3)2 + (-1)2 + 12 = 11 und daraus die Wurzel. Du siehst, diese beiden Längen stimmen überein, also haben wir das, diese beiden hier. Jetzt muss ich einmal gucken, AD und DC, also in diesem Bild natürlich nicht, das ist nur meine, so eine Skizze, damit ich weiß, wie die Buchstaben da stehen, sind gleich lang, damit sind auch diese beiden gleich lang. Diese Orthogonalität der Diagonalen hatten wir schon, also haben wir den Nachweis, dass es ein Drachen ist. Und das Bild kannst du jetzt hier auch noch einmal sehen. Den rechten Winkel kannst du hier markiert sehen und auch die gleichen Längen. Ich mache das noch einmal kleiner, und dann hast du es hier stehen. Nun fasse ich noch einmal kurz zusammen, was ich in diesem Video gemacht habe: Ich habe dir gezeigt, wie du besondere Eigenschaften von Vierecken mit Hilfe von Vektoren nachweisen kannst. Dafür ist es natürlich gut , wenn du die speziellen Eigenschaften der Vierecke kennst. Das habe ich ganz am Anfang gezeigt mit dem Haus der Vierecke. Und das Ganze habe ich an drei Beispielen gemacht, einmal ein Parallelogramm. Wir hatten ein Parallelogramm, einmal ein Rechteck, wir hatten kein Rechteck und einmal jetzt gerade ein Drachen. Und das war wirklich der Fall. Nun hoffe ich, dass du alles gut verstehen konntest und danke dir für deine Aufmerksamkeit. Wie immer freue ich mich über Fragen und Anregungen. Bis zum nächsten Mal, dein Frank.
Besondere Vierecke mit Vektoren bestimmen Übung
-
Beschreibe, wie man nachweisen kann, dass das gegebene Viereck ein Parallelogramm ist.
-
Ergänze den Weg, wie man überprüft, ob das gegebene Viereck ein Drachenviereck ist.
-
Prüfe, ob das gegebene Viereck mit den Punkten , , und ein Quadrat ist.
-
Bestimme den Punkt so, dass das Viereck ein Rechteck ist.
-
Nenne die Zusammenhänge zwischen den einzelnen Vierecken.
-
Weise nach, dass eine Diagonale eines Drachenvierecks die andere in der Mitte schneidet.
9.172
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.070
Lernvideos
37.104
Übungen
33.418
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal
Es ist guuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuut
Naja, bisschen deutlicher erklaert waere nicht schlecht.
sehr gut
gut verständlich erklärt danke
gut gemacht