Schrägbild des Würfels
Zeichne Schrägbilder: Verstehe und konstruiere Würfel! Entdecke verschiedene Ansichten eines Würfels, lerne das Zeichnen von Schrägbildern und erfahre mehr über seine Eigenschaften. Bist du bereit für kreative Konstruktionen? Interessiert? All das und vieles mehr findest du im folgenden Video!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Schrägbild des Würfels
Nach dem Schauen dieses Videos wirst du in der Lage sein, das Schrägbild eines Würfels zu zeichnen.
Zunächst lernst du, aus welchen verschiedenen Ansichten du den Würfel betrachten kannst. Anschließend lernst du, wie du das Schrägbild eines Würfels zeichnen kannst. Abschließend lernst du, welche Eigenschaften das Schrägbild des Würfels besitzt.
Lerne etwas über das Zeichnen von Schrägbildern.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Würfel, Schrägbild, Kanten, Winkel, Konstruktion und Eigenschaften eines Schrägbilds.
Bevor du dieses Video schaust, solltest du bereits wissen, was ein Würfel ist.
Nach diesem Video wirst du darauf vorbereitet sein, Schrägbilder anderer Körper zu konstruieren.
Transkript Schrägbild des Würfels
Wir befinden uns in einem Raumschiff, das fremde Planeten erforscht weit, weit in den Tiefen des Universums. Es scheint als gäbe es kein Ende. Doch was ist das?! Ein Planet und dieser ist umgeben von Würfeln. Wollen wir diese Würfel nachzeichnen, so müssen wir Schrägbilder des Würfels zeichnen können. Ein Würfel wird von sechs quadratischen Flächen begrenzt. Der Würfel hat verschiedene Ansichten: Die Vorderansicht, die Seitenansicht und die Draufsicht. Hierbei siehst du immer nur eine Begrenzungsfläche. Nur aus der schrägen Perspektive nimmst du den Würfel auf der ebenen Fläche deines Bildschirms räumlich wahr. Eine solche Ansicht bezeichnet man als „Schrägbild“. Und genau so ein Schrägbild werden wir jetzt darstellen. Wir nehmen uns dazu kariertes Papier zur Hilfe. Wir wollen einen Würfel mit einer Seitenlänge von 3 cm konstruieren und zeichnen zunächst die vordere Fläche. Dann zeichnen wir die Kanten, die nach hinten laufen. Diese müssen wir schräg und verkürzt zeichnen. Um sie schräg zu zeichnen wählen wir einen Winkel von 45 Grad. Für 1cm Seitenlänge zeichnet man eine Kästchendiagonale. Die nicht sichtbare Kante wird gestrichelt. Betrachtet man den Würfel von der Vorderansicht, so ist diese Kante von der Vorderfläche bedeckt. Man würde sie also nicht sehen. Zum Zeichnen der Rückseite werden die Endpunkte der schräg nach hinten verlaufenden Kanten verbunden. Die nicht sichtbaren Kanten werden auch hier gestrichelt gezeichnet. Was für Eigenschaften hat das Schrägbild denn nun? Parallele Kanten sind auch im Schrägbild parallel. Gegenüberliegende Kanten, die in Wirklichkeit gleich lang sind, sind auch im Schrägbild gleich lang. Die Kanten, die nach hinten laufen, sind im Schrägbild verkürzt, um einen räumlichen Eindruck zu erwecken. Trotzdem werden die Originalmaße bei der Beschriftung angegeben. Unsichtbare Kanten werden im Schrägbild gestrichelt gezeichnet. Fassen wir nochmal die Konstruktionsschritte für das Zeichnen des Schrägbilds eines Würfels zusammen. Als erstes wird die Vordere Fläche gezeichnet. Dann die nach hinten laufenden Kanten. Diese werden schräg und verkürzt gezeichnet. Dann verbindet man nur noch die Endpunkte. Unsichtbare Kanten werden im Schrägbild gestrichelt gezeichnet. Hier gibt es nichts mehr zu entdecken... Auf zum nächsten Planeten!
-
Sehr hilfreiches Video hat mir sehr viel beigebracht😁
-
Bringt mir richtig was bei
-
Ich liebe Schrägbilder ❤❤❤❤❤ :)
-
krass war cool
!!!!!!!!!!!!!!!!!!!!!!!!!!
-
super sooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo cool
Schrägbild des Würfels Übung
-
Zeige die Schritte beim Zeichnen des Schrägbildes eines Würfels auf.
-
Benenne die wichtigen Eigenschaften des Schrägbildes eines Würfels.
-
Ermittle die Schrägbilder eines Würfels.
-
Bestimme die Fehler, die beim Zeichnen der Schrägbilder eines Würfels mit aufgetreten sind.
-
Gib die Eigenschaften eines Würfels wieder.
-
Worin unterscheiden sich das Schrägbild eines Quaders und das Schrägbild eines Würfels?
9.244
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.145
Lernvideos
38.623
Übungen
33.448
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben