Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Termumformungen mit Variablen

Entdecke, wie du Summen zu Produkten umformst und wie gleichartige Terme zusammengefasst werden. Erfahre, wie du Klammern durch Ausmultiplizieren löst. All das und mehr zur Termumformung mit Variablen, anhand von leicht verständlichen Beispielen erklärt. Neugierig geworden? Tauche tiefer in die Welt der Mathematik ein!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Termumformungen mit Variablen

Was bedeutet Termumformung mit Variablen?

1/5
Bewertung

Ø 4.3 / 226 Bewertungen
Die Autor*innen
Avatar
Team Digital
Termumformungen mit Variablen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Termumformungen mit Variablen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Termumformungen mit Variablen kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zu Termen und Termumformungen.

    Tipps

    Dieser Term wurde korrekt ausmultipliziert:

    $2(3x+7y)=2 \cdot 3x + 2 \cdot 7y=6x+14y$

    Dieser Term kann nicht weiter zusammengefasst werden:

    $6x+14y$

    Lösung

    Diese Aussagen sind falsch:

    „Du kannst Terme, in denen die gleichen Variablen vorkommen, zwar addieren, aber niemals subtrahieren.“

    • Gleichartige Terme kannst du zusammenfassen, indem du sie addierst oder subtrahierst. Beachte dabei die Vorzeichen der Terme.
    „Multiplizierst du eine positive Zahl mit einer negativen Zahl, wird das Ergebnis positiv.“

    • Beim Multiplizieren zweier Zahlen mit unterschiedlichen Vorzeichen wird das Ergebnis immer negativ.
    Diese Aussagen sind richtig:

    „Du kannst nur gleichartige Terme (also Terme, die die gleiche Variable enthalten) zusammenfassen.“

    „Mithilfe des Distributivgesetzes können Summanden mit gleichen Variablen oder Zahlen noch weiter zusammengefasst werden.“

    • Du kannst das Distributivgesetz anwenden, um gemeinsame Zahlen oder Variablen von Summanden (aber auch von Subtrahenden und Minuenden) auszuklammern. Es ist zum Beispiel: $2r+2r+1r+3r=(2+2+1+3)\cdot r$
    „Beim Ausmultiplizieren wird jeder Summand in der Klammer mit dem Faktor vor der Klammer multipliziert.“

  • Beschreibe das Rechnen mit Termen und ihren Umformungen.

    Tipps

    Mit dem Distributivgesetz kannst du Faktoren, die in allen Summanden vorkommen, ausklammern und anschließend die Zahlenwerte zusammenrechnen. Sieh dir folgendes Beispiel an:

    $2a+3a=(2+3)\cdot a= 5 a$

    Besteht ein Term aus Summanden mit unterschiedlichen Variablen, kannst du nur Terme zusammenfassen, die dieselbe Variable enthalten.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Auf der ersten Insel beschreibt er die Anzahl der Rubine durch folgenden Term:

    $r+r+2r+r+3r$

    Hier schreibt er zuerst $1r$ statt $r$.“

    • Dies verändert den Wert des Terms nicht. Es wird so aber einfacher, die Summanden zu berechnen.
    „$=1r+1r+2r+1r+3r$

    Dann wendet er das Distributivgesetz an, um die gemeinsame Variable der Summanden wie folgt auszuklammern:

    $(1+1+2+1+3) \cdot r=8r$“

    • Mit dem Distributivgesetz kannst du Faktoren, die in allen Summanden vorkommen, ausklammern und anschließend die Zahlenwerte zusammenrechnen.
    „Die Anzahl der Smaragde gibt er durch folgenden Term an:

    $3s+1s+1s+2s$

    Auch diesen klammert er mit dem Distributivgesetz wie folgt aus:

    $(3+1+1+2)\cdot s=7s$

    Dazu stellt er folgenden Term auf:

    $8r+7s+12r+15s$

    Und vereinfacht ihn:

    $20r+22s$“

    • Besteht ein Term aus Summanden mit unterschiedlichen Variablen, kannst du nur Terme zusammenfassen, die dieselbe Variable enthalten.
  • Ermittle die vereinfachte Form der Terme.

    Tipps

    Um die Lösung zu bestimmen, fasst du alle Summanden, die die gleiche Variable enthalten, mit dem Distributivgesetz zusammen.

    Steht vor einer Variablen kein Faktor, kannst du eine $1$ davor schreiben.

    Lösung

    Um die Lösung zu bestimmen, fasst du alle Summanden, die die gleiche Variable enthalten, mit dem Distributivgesetz zusammen. Steht vor einer Variablen kein Faktor, kannst du eine $1$ davor schreiben. So erhältst du:

    • $2t+c+5c+t=(2+1)t+ (5+1)c=3t+6c$
    • $t+c+2c+4c+t=(1+1)t+ (1+2+4)c=2t+7c$
    • $t+c+t+1c+2t+4c+t=(1+1+2+1)t+ (1+1+4)c=5t+6c$
    • $4t+4c+t+3c=(4+1)t+ (4+3)c=5t+7c$
  • Ermittle die ausmultiplizierte Form der Terme.

    Tipps

    Bei den ersten beiden Termen musst du alle Einträge in der Klammer mit dem Faktor vor der Klammer multiplizieren.

    Bei den letzten beiden Termen musst du jeweils beide Einträge der ersten Klammer mit dem Faktor hinter der Klammer multiplizieren. Anschließend kannst du gleichartige Terme zusammenfassen.

    Lösung

    Du kannst die Lücken füllen, indem du die Terme ausmultiplizierst und vereinfachst. Bei den ersten beiden Termen musst du alle Einträge in der Klammer mit dem Faktor vor der Klammer multiplizieren. So erhältst du:

    • $2x(3+x)=2x \cdot 3 + 2x \cdot x=2x^2+6x$
    • $3x(1+x+2x^2)= 3x \cdot 2x^2 +3x \cdot x + 3x \cdot 1=6x^3+3x^2+3x$
    Bei den letzten beiden Termen musst du jeweils beide Einträge der ersten Klammer mit dem Faktor hinter der Klammer multiplizieren. Anschließend kannst du gleichartige Terme zusammenfassen. Die Vorzeichen sind hierbei zu beachten. So erhältst du:

    $\begin{array}{ll} (x-2)\cdot 2x &=& x \cdot 2x - 2 \cdot 2x \\ &=& 2x^2 - 4x \\ \end{array}$

    Und:

    $\begin{array}{ll} (3x-1)\cdot(-3x^2) &=& 3x \cdot (-3x^2) -1 \cdot (-3x^2) \\ &=& -9x^3 + 3x^2 \\ \end{array}$

  • Bestimme die fehlenden Summanden.

    Tipps

    Multipliziere den Term aus und vereinfache ihn anschließend.

    Beachte, dass du jeden Summanden der einen Klammer einzeln mit jedem Summanden der anderen Klammer multiplizieren musst.

    Lösung

    Du kannst die Lücken füllen, indem du den Term ausmultiplizierst und anschließend vereinfachst. Beachte, dass du jeden Summanden der einen Klammer einzeln mit jedem Summanden der anderen Klammer multiplizieren musst. So erhältst du:

    $\begin{array}{ll} (3+4)(x+y) &= 3x + 4x + 3y+4y\\ &= 7x + 7y\\ \end{array}$

  • Leite den Term ab und vereinfache ihn.

    Tipps

    Die Fläche eines Rechtecks berechnest du, indem du die beiden Seitenlängen multiplizierst.

    Da die Länge des ersten Feldes mit $x$ bezeichnet wird und das zweite Feld $10~\text{m}$ kürzer ist, können wir die Länge des zweiten Feldes durch $x-10$ ausdrücken.

    Zwei Klammern multiplizierst du, indem du jeden Summanden der ersten Klammer mit jedem Summanden der zweiten Klammer multiplizierst. Anschließend kannst du gleichnamige Terme zusammenfassen.

    Beispiel:

    $\begin{array}{lll} (2x + 3) \cdot (x + 1) &=& 2x \cdot x + 2x \cdot 1 + 3 \cdot x + 3 \cdot 1 \\ &=& 2x^2 + 2x +3x+3 \\ &=& 2x^2 + 5x +3 \\ \end{array}$

    Lösung

    So kannst du die Rechnung vervollständigen:

    „Die Länge des ersten Feldes beträgt: $x$

    Die Breite des ersten Feldes beträgt: $y$

    Die Fläche beträgt: $A_1=x \cdot y$“

    • Die Fläche eines Rechtecks berechnest du, indem du die beiden Seitenlängen multiplizierst.
    „Die Länge des zweiten Feldes beträgt: $x-10$“

    • Da die Länge des ersten Feldes mit $x$ bezeichnet wird und das zweite Feld $10~\text{m}$ kürzer ist, können wir es so ausdrücken.
    „Die Breite des zweiten Feldes beträgt: $y+20$

    Die Fläche beträgt: $A_2=(x -10) \cdot (y+20)$“

    • Beachte hier die Klammern. Ohne sie wäre die Rechnung nicht korrekt.
    „Also beträgt die Gesamtfläche:

    $A_{Ges}=A_1+A_2=xy+(x -10) \cdot (y+20)$“

    • Die Gesamtfläche bestimmen wir, indem wir die beiden Teilflächen addieren.
    „Das vereinfacht sie zu:

    $=xy+ xy + 20x-10y-200=2xy+20x-10y-200$“

    • Hier musst du den Term zuerst ausmultiplizieren und anschließend vereinfachen. Beachte die Vorzeichen der Ergebnisse.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.172

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.071

Lernvideos

37.102

Übungen

33.418

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden