Termumformungen mit Variablen
Entdecke, wie du Summen zu Produkten umformst und wie gleichartige Terme zusammengefasst werden. Erfahre, wie du Klammern durch Ausmultiplizieren löst. All das und mehr zur Termumformung mit Variablen, anhand von leicht verständlichen Beispielen erklärt. Neugierig geworden? Tauche tiefer in die Welt der Mathematik ein!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Was ist ein Term?

Rechenregeln in Termen

Terme vereinfachen

Terme durch Rechenbäume beschreiben

Rechenbäume lösen

Terme aufstellen und berechnen

Aus gegebenen Daten Terme aufstellen und berechnen

Schlüsselwörter für Addition und Subtraktion

Termumformungen ohne Variablen

Termumformungen mit Variablen
Termumformungen mit Variablen Übung
-
Bestimme die korrekten Aussagen zu Termen und Termumformungen.
TippsDieser Term wurde korrekt ausmultipliziert:
$2(3x+7y)=2 \cdot 3x + 2 \cdot 7y=6x+14y$
Dieser Term kann nicht weiter zusammengefasst werden:
$6x+14y$
LösungDiese Aussagen sind falsch:
„Du kannst Terme, in denen die gleichen Variablen vorkommen, zwar addieren, aber niemals subtrahieren.“
- Gleichartige Terme kannst du zusammenfassen, indem du sie addierst oder subtrahierst. Beachte dabei die Vorzeichen der Terme.
- Beim Multiplizieren zweier Zahlen mit unterschiedlichen Vorzeichen wird das Ergebnis immer negativ.
„Du kannst nur gleichartige Terme (also Terme, die die gleiche Variable enthalten) zusammenfassen.“
„Mithilfe des Distributivgesetzes können Summanden mit gleichen Variablen oder Zahlen noch weiter zusammengefasst werden.“
- Du kannst das Distributivgesetz anwenden, um gemeinsame Zahlen oder Variablen von Summanden (aber auch von Subtrahenden und Minuenden) auszuklammern. Es ist zum Beispiel: $2r+2r+1r+3r=(2+2+1+3)\cdot r$
-
Beschreibe das Rechnen mit Termen und ihren Umformungen.
TippsMit dem Distributivgesetz kannst du Faktoren, die in allen Summanden vorkommen, ausklammern und anschließend die Zahlenwerte zusammenrechnen. Sieh dir folgendes Beispiel an:
$2a+3a=(2+3)\cdot a= 5 a$
Besteht ein Term aus Summanden mit unterschiedlichen Variablen, kannst du nur Terme zusammenfassen, die dieselbe Variable enthalten.
LösungSo kannst du den Lückentext vervollständigen:
„Auf der ersten Insel beschreibt er die Anzahl der Rubine durch folgenden Term:
$r+r+2r+r+3r$
Hier schreibt er zuerst $1r$ statt $r$.“
- Dies verändert den Wert des Terms nicht. Es wird so aber einfacher, die Summanden zu berechnen.
Dann wendet er das Distributivgesetz an, um die gemeinsame Variable der Summanden wie folgt auszuklammern:
$(1+1+2+1+3) \cdot r=8r$“
- Mit dem Distributivgesetz kannst du Faktoren, die in allen Summanden vorkommen, ausklammern und anschließend die Zahlenwerte zusammenrechnen.
$3s+1s+1s+2s$
Auch diesen klammert er mit dem Distributivgesetz wie folgt aus:
$(3+1+1+2)\cdot s=7s$
Dazu stellt er folgenden Term auf:
$8r+7s+12r+15s$
Und vereinfacht ihn:
$20r+22s$“
- Besteht ein Term aus Summanden mit unterschiedlichen Variablen, kannst du nur Terme zusammenfassen, die dieselbe Variable enthalten.
-
Ermittle die vereinfachte Form der Terme.
TippsUm die Lösung zu bestimmen, fasst du alle Summanden, die die gleiche Variable enthalten, mit dem Distributivgesetz zusammen.
Steht vor einer Variablen kein Faktor, kannst du eine $1$ davor schreiben.
LösungUm die Lösung zu bestimmen, fasst du alle Summanden, die die gleiche Variable enthalten, mit dem Distributivgesetz zusammen. Steht vor einer Variablen kein Faktor, kannst du eine $1$ davor schreiben. So erhältst du:
- $2t+c+5c+t=(2+1)t+ (5+1)c=3t+6c$
- $t+c+2c+4c+t=(1+1)t+ (1+2+4)c=2t+7c$
- $t+c+t+1c+2t+4c+t=(1+1+2+1)t+ (1+1+4)c=5t+6c$
- $4t+4c+t+3c=(4+1)t+ (4+3)c=5t+7c$
-
Ermittle die ausmultiplizierte Form der Terme.
TippsBei den ersten beiden Termen musst du alle Einträge in der Klammer mit dem Faktor vor der Klammer multiplizieren.
Bei den letzten beiden Termen musst du jeweils beide Einträge der ersten Klammer mit dem Faktor hinter der Klammer multiplizieren. Anschließend kannst du gleichartige Terme zusammenfassen.
LösungDu kannst die Lücken füllen, indem du die Terme ausmultiplizierst und vereinfachst. Bei den ersten beiden Termen musst du alle Einträge in der Klammer mit dem Faktor vor der Klammer multiplizieren. So erhältst du:
- $2x(3+x)=2x \cdot 3 + 2x \cdot x=2x^2+6x$
- $3x(1+x+2x^2)= 3x \cdot 2x^2 +3x \cdot x + 3x \cdot 1=6x^3+3x^2+3x$
$\begin{array}{ll} (x-2)\cdot 2x &=& x \cdot 2x - 2 \cdot 2x \\ &=& 2x^2 - 4x \\ \end{array}$
Und:
$\begin{array}{ll} (3x-1)\cdot(-3x^2) &=& 3x \cdot (-3x^2) -1 \cdot (-3x^2) \\ &=& -9x^3 + 3x^2 \\ \end{array}$
-
Bestimme die fehlenden Summanden.
TippsMultipliziere den Term aus und vereinfache ihn anschließend.
Beachte, dass du jeden Summanden der einen Klammer einzeln mit jedem Summanden der anderen Klammer multiplizieren musst.
LösungDu kannst die Lücken füllen, indem du den Term ausmultiplizierst und anschließend vereinfachst. Beachte, dass du jeden Summanden der einen Klammer einzeln mit jedem Summanden der anderen Klammer multiplizieren musst. So erhältst du:
$\begin{array}{ll} (3+4)(x+y) &= 3x + 4x + 3y+4y\\ &= 7x + 7y\\ \end{array}$
-
Leite den Term ab und vereinfache ihn.
TippsDie Fläche eines Rechtecks berechnest du, indem du die beiden Seitenlängen multiplizierst.
Da die Länge des ersten Feldes mit $x$ bezeichnet wird und das zweite Feld $10~\text{m}$ kürzer ist, können wir die Länge des zweiten Feldes durch $x-10$ ausdrücken.
Zwei Klammern multiplizierst du, indem du jeden Summanden der ersten Klammer mit jedem Summanden der zweiten Klammer multiplizierst. Anschließend kannst du gleichnamige Terme zusammenfassen.
Beispiel:
$\begin{array}{lll} (2x + 3) \cdot (x + 1) &=& 2x \cdot x + 2x \cdot 1 + 3 \cdot x + 3 \cdot 1 \\ &=& 2x^2 + 2x +3x+3 \\ &=& 2x^2 + 5x +3 \\ \end{array}$
LösungSo kannst du die Rechnung vervollständigen:
„Die Länge des ersten Feldes beträgt: $x$
Die Breite des ersten Feldes beträgt: $y$
Die Fläche beträgt: $A_1=x \cdot y$“
- Die Fläche eines Rechtecks berechnest du, indem du die beiden Seitenlängen multiplizierst.
- Da die Länge des ersten Feldes mit $x$ bezeichnet wird und das zweite Feld $10~\text{m}$ kürzer ist, können wir es so ausdrücken.
Die Fläche beträgt: $A_2=(x -10) \cdot (y+20)$“
- Beachte hier die Klammern. Ohne sie wäre die Rechnung nicht korrekt.
$A_{Ges}=A_1+A_2=xy+(x -10) \cdot (y+20)$“
- Die Gesamtfläche bestimmen wir, indem wir die beiden Teilflächen addieren.
$=xy+ xy + 20x-10y-200=2xy+20x-10y-200$“
- Hier musst du den Term zuerst ausmultiplizieren und anschließend vereinfachen. Beachte die Vorzeichen der Ergebnisse.
9.172
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.071
Lernvideos
37.102
Übungen
33.418
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal