Reale Gase

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Reale Gase
Nachdem wir bereits mehrere Probleme der Thermodynamik unter der Näherung idealer Gase erfolgreich besprochen haben, stoßen wir bei bestimmten Beobachtungen an die Grenzen des Modells. Ideale Gase können nämlich den flüssigen Aggregatzustand nicht erklären. Der Übergang zu den realen Gasen besteht in der Grundidee, die idealisierte Beschreibung durch die Zustandsgleichung mit Korrekturtermen zu versehen. In Wirklichkeit haben Gasteilchen nämlich eine gewisse Ausdehnung und das Druckverhalten wird von dem Umstand beeinflußt, daß die Gasteilchen eine Anziehungswirkung aufeinander haben. Versehen mit den entsprechenden Korrekturen erhält man eine nützliche Zustandsgleichung für reale Gase. Nach ihrem Entdecker nennt man sie van-der-Waals-Gleichung. Das p-V-Diagramm zeigt für Isothermen bei nicht zu hohen Temperaturen Minima, während bei einer bestimmten Temperatur ein Wendepunkt beobachtet wird. Diesen bezeichnet man als "kritischen Punkt". Er wird durch die "kritische Temperatur" und den "kritischen Druck" gekennzeichnet. Gase oberhalb der kritischen Temperatur bezeichnet man als "überkritisch". Sie verfügen über eine nützliche Eigenschaft, deren Verwendung ich zu Ende des Videos vorstelle. Viel Vergnügen !
Transkript Reale Gase
Hallo und ganz herzlich willkommen! In diesem Video geht es um „Reale Gase“. Du kennst die Zustandsgleichung für ideale Gase. Nachher kennst du die Zustandsgleichung für reale Gase, du kannst das p-V-Diagramm für Kohlenstoffdioxid erklären und du weißt, was überkritische Gase sind. Der Film besteht aus fünf Abschnitten: Erstens, ideale Gase; zweitens, reale Gase; drittens, Zustandsgleichung für reale Gase; viertens, das p-V-Diagramm für Kohlenstoffdioxid und fünftens, das überkritische Gas. Und schon geht’s los. Ideale Gase: Sie bestehen aus vielen kleinen Teilchen, die relativ weit voneinander entfernt sind und untereinander kaum in Beziehung treten. Welche Eigenschaften werden nun diesen Teilchen bei den idealen Gasen zugeschrieben? Nun, einmal geht man davon aus, dass diese Teilchen über kein Eigenvolumen verfügen. Zwar können sie elastisch zusammenstoßen, aber es gibt keine Anziehungskräfte zwischen ihnen. Und wenn diese Bedingungen gut erfüllt sind, dann gilt auch die Gleichung p * V = n * R * T. Man nennt sie auch oft kurz die Gasgleichung, eben für ideale Gase. Wir wollen einmal überlegen, was das bedeutet. Keine Anziehungskräfte zwischen den Teilchen. Na? Richtig. Für Gase ist das völlig unerheblich. Aber für die anderen Aggregatzustände, es gibt demzufolge keinen Phasenübergang. Und das hätte üble Folgen für die Wirklichkeit. Gasförmiges Wasser hätten wir und zwar nur gasförmiges. Tja, meine Lieben. Aber flüssiges Wasser gäbe es nicht. Und schon gar kein festes Wasser, kein Eis und keinen Schnee. So, und jetzt sind wir reif für zweitens, reale Gase. Naja und bei denen ist es so, wie es sich gehört. Ihre Teilchen haben ein Eigenvolumen und natürlich gibt es Anziehungskräfte zwischen den Teilchen. Und Gott sei Dank hat unsere Welt ihre drei Aggregatzustände. Drittens, Zustandsgleichung für reale Gase. Die Zustandsgleichung für ideale Gase kennen wir inzwischen auswendig: p * V = n * R * T. Der Übergang zu den realen Gasen ist nicht ganz einfach. Das gelang dem Physiker van der Waals, wofür er den Nobelpreis 1910 erhielt. Seine Grundidee war einfach, aber genial. Für den Druck p und das Volumen V führte er Korrekturterme ein, so dass die Zustandsgleichung folgende Form erhielt. p + Delta p * V - Delta V = n * R * T. Durch Delta p wird ein Druckverlust ausgeglichen und für Delta V mit negativem Vorzeichen steht eine Realvolumenkorrektur. Wie wurden diese Korrekturterme sinnvoll umgesetzt? Dafür schreiben wir die Van-der-Waalssche-Grundidee noch einmal auf: Delta p korrigiert die Tatsache, dass eine Anziehung zwischen den Teilchen in einem idealen Gas nicht berücksichtigt wird. Van der Waals fand dafür n2 / V2, wobei n die Stoffmenge ist und V das Volumen des Gases, a ist eine stoffabhängige Konstante. Für Delta V schrieb er: b * n. Das negative Vorzeichen ist klar und warum die Stoffmenge berücksichtigt wird, auch. Denn hier fließt das Realvolumen eines realen Gases ein. Somit erhielt van der Waals: (p + a * n2 / V2) * (V - b * n) = n * R * T. Und diese Gleichung funktioniert gut für reale Gase. a und b sind die sogenannten Van-der-Waals-Konstanten. Ganz klar, das sind Stoffkonstanten. Viertens: Das p-V-Diagramm für Kohlenstoffdioxid. Festes Kohlenstoffdioxid ist Trockeneis. Ich behaupte: Wäre CO2 ein ideales Gas, dann gäbe es kein Trockeneis. Ist das tatsächlich so? Das ist so. Ein ideales Gas kann nicht fest werden. Schauen wir uns nun einmal das p-V-Diagramm an. Ich zeichne mal drauf los. Und? Richtig, das sind Isothermen für ein ideales Gas. Isothermen bedeutet, die Temperatur ist jeweils konstant. Offensichtlich gilt hier: T1 < T2 < T3. Nicht nur Menschen haben Problemzonen, auch Isothermen. Und diese macht der roten Kurve gewaltig zu schaffen. Denn bei relativ niedrigen Temperaturen eines Gases muss man die Zustandsgleichung für reale Gase verwenden. Und nun schauen wir uns einmal die Isothermen für Kohlenstoffdioxid an. Den Druck tragen wir in bar auf, das Volumen in Kubikdezimeter oder Liter, wem das lieber ist. Die Stoffmenge müssen wir fixieren, wir betrachten jeweils ein Mol des Kohlenstoffdioxids. Diese hübsche Kurve erhalten wir für 0 ºC. Bei 20 ºC sieht die Kurve so aus. Bei 31,5 ºC so. Bei 40 ºC erinnert die Kurve schon etwas an eine ideale Isotherme. Und nun ein wenig Kurvendiskussion. Kennt ihr ja alle aus der Analysis in der Mathematik. Was bedeuten hier die blauen Punkte? Es sind stationäre Punkte: Hochpunkt, Tiefpunkt, Wendepunkt. Erinnert euch! Die notwendige Bedingung dafür ist, dass die Ableitung des Drucks nach dem Volumen gleich Null ist. Mit diesem Begriff möchte ich hier Hochpunkte, Tiefpunkte und Sattelpunkte zusammenfassen. Die Steigung der jeweiligen Kurve ist dann gleich Null. Alle drei Aussagen sind untereinander äquivalent. Als blaue Punkte lasse ich zwei Minima stehen. Der Wendepunkt, der gleichzeitig Sattelpunkt ist, wird hier rot markiert. Die konstante Temperatur für diese Isotherme beträgt 31,5 ºC. Und diese hat es in sich. Man bezeichnet sie als kritische Temperatur, abgekürzt TK. Und jetzt kommt etwas ganz Fantastisches. Denn für alle Temperaturen T oberhalb TK ist eine Druckverflüssigung des Gases unmöglich. Den roten Punkt, hier mit K markiert, bezeichnet man auch als „Kritischen Punkt“. Die kritische Temperatur für Kohlenstoffdioxid ist folglich 31,5 ºC. Der kritische Druck beträgt dabei 73,5 bar. Das ist nämlich der Mindestdruck, mit dem bei der kritischen Temperatur die Luftverflüssigung gerade noch möglich ist. Zum Vergleich einmal diese Isotherme: So verläuft eine Isotherme bei 0 ºC und zwar für ein ideales Gas. Die beiden Kurven bei realen und idealen Bedingungen sind völlig verschieden. Hier ungefähr ist unser reales Gas flüssig. Ein ideales Gas mag das überhaupt nicht. Und hier, oberhalb der kritischen Temperatur, ist auch das reale Gas tatsächlich gasförmig. Oberhalb der kritischen Temperatur ist jedes reale Gas auch bei höchstem Druck stets gasförmig. Zum Vergleich orange markiert: das ist der Atmosphärendruck. Der Atmosphärendruck beträgt etwa ein bar. Der schraffierte Bereich wird als „überkritisch“ bezeichnet. Kohlenstoffdioxid ist hier überkritisch, lässt sich nicht mehr verflüssigen. Wir sollten hier unbedingt festhalten: Überkritische Gase stellen eine gute Näherung für ideale Gase dar. So, und jetzt machen wir es mal umgekehrt. Wir nehmen die Van-der-Waalssche Gleichung für reale Gase. Die Van-der-Waals-Konstanten a und b sind für Helium klein. Damit ist Helium in guter Näherung ein ideales Gas. Und nun stellen wir die Bedingungen zusammen, die von „real“ zu „ideal“ führen: Wenn die Temperatur hoch ist, stellt das Gas eine gute Näherung für ein ideales Gas dar. Das haben wir bereits gelernt, als wir über überkritische Gase gesprochen haben. Und jetzt schauen wir uns einmal die Gasgleichung für reale Gase an. Wir stellen fest, dass bei großen V der Korrekturterm für p verschwindet. Die Gase sind gewissermaßen verdünnt. Wenn die Teilchenzahl gegen Null strebt, wieder Verdünnung, gehen beide Korrekturterme, sowohl für p als auch für V, gegen Null. Tja, und im Ergebnis erhalten wir aus diesen Bedingungen unsere gute gewohnte Zustandsgleichung für ideale Gase: p * V = n * R * T. Fünftens: Das überkritische Gas. Ist die Temperatur höher als die kritische, so nennt man das Gas „überkritisch“. Wird ein überkritisches Gas einem hohen Druck ausgesetzt, so sagt man häufig: Dieser Stoff ist dann weder flüssig noch gasförmig. Unter solchen Bedingungen zeigen überkritische Gase ein gutes Lösevermögen für viele Stoffe. Unter anderem lassen sich aus Holz niedermolekulare extrahieren. Überkritisches CO2 ist für die Extraktion vieler Stoffe geeignet, wenn die Temperatur und der Druck ausreichend hoch sind. Dieser Prozess wird technisch verwertet. Zum Beispiel wird aus Kaffee das Coffein entfernt. Oder man extrahiert Majoran. Und schließlich, kein Witz, man kann mit überkritischem CO2 Wäsche waschen. Das war ein weiterer Film von André Otto. Ich wünsche euch alles Gute und viel Erfolg. Tschüss!
Reale Gase Übung
-
Benenne, unter welchen Umstanden ein ideales Gas eine gute Näherung für ein reales Gas ist.
-
Nenne die Van-der-Waal'sche Zustandsgleichung.
-
Erkläre das überkritische Gas.
-
Erkläre den kritischen Punkt und seine Auswirkungen.
-
Benenne Unterschiede von realen zu idealen Gasen.
-
Beschreibe eine technische Anwendung eines überkritischen Gases.
9.226
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.129
Lernvideos
38.597
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt