Bau und Reaktionsverhalten der Carbonylgruppe
Die Carbonylgruppe ist eine wichtige funktionelle Gruppe, die Aldehyde und Ketone kennzeichnet. Diese Gruppe hat polarisierbare Bindungen und kann nukleophilen und elektrophilen Angriffen ausgesetzt sein. Interessiert? Erfahre mehr über ihre Eigenschaften und Reaktivität, indem du weiterliest!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Bau und Reaktionsverhalten der Carbonylgruppe
Die Carbonylgruppe in der Chemie
Funktionelle Gruppen bestimmen wesentlich die Eigenschaften von Stoffgruppen. In diesem Text wollen wir eine bestimmte funktionelle Gruppe genauer betrachten – die Carbonylgruppe. Insbesondere geht es hier um den Bau und das Reaktionsverhalten der Carbonylgruppe.
Wusstest du schon?
Der Geruch eines frisch geschnittenen Apfels oder einer Scheibe Brot ist oft auf eine Chemikalie mit einer Carbonylgruppe zurückzuführen. Viele Geschmacks- und Duftstoffe enthalten Carbonylgruppen, die ihnen ihre charakteristischen Aromen verleihen. Dass die Chemie deine Sinne so beeinflussen kann, ist doch faszinierend, oder?
Carbonylgruppe – Definition
Die Carbonylgruppe ist eine Verbindung aus einem zentralen, vierbindigen Kohlenstoffatom
Sind beide freien Bindungen am Kohlenstoffatom mit einem organischen Rest abgesättigt
Aldehyde $\left(\ce{R-CHO}\right)$ und Ketone $\left(\ce{R1-C(=O)-R2}\right)$ spielen eine große Rolle in der Chemie und Biochemie. Sie bilden zum Beispiel die Grundstruktur für verschiedene Aromastoffe, Vitamine, Hormone oder Zucker.
Die Struktur der Carbonylgruppe
Sowohl das Sauerstoffatom als auch das Kohlenstoffatom der Carbonylgruppe weisen eine sp2‑Hybridisierung auf. Die Doppelbindung zwischen dem Sauerstoffatom und dem Kohlenstoffatom besteht zum einen aus zwei stark überlappenden sp2-Hybridorbitalen. Man spricht daher von einer sp2-sp2-$\sigma$-Bindung. Zum anderen gibt es jeweils zwei Orbitale in der Bindung, die sich oberhalb und unterhalb der sp2-sp2-$\sigma$-Bindung weniger stark überlappen. Dabei handelt es sich jeweils um $p$-Orbitale, weswegen diese Bindungen als p-p-$\pi$-Bindungen bezeichnet werden. $\pi$-Bindungen sind stark polarisierbar, was bedeutet, dass die Ladung innerhalb des Moleküls verschoben wird. Die Bindungswinkel einer Carbonylgruppe betragen ziemlich genau $120°$.
Eigenschaften der Carbonylgruppe
Da Sauerstoff eine deutlich größere Elektronegativität hat als Kohlenstoff, ist die negative Ladung in Richtung des Sauerstoffatoms verschoben und das Sauerstoffatom ist in dieser Bindung negativ polarisiert. Diese Partialladung kennzeichnet man durch ein hochgestelltes $\delta^-$. Das Kohlenstoffatom wird dadurch gleichzeitig positiv polarisiert und erhält eine positive Partialladung $\delta^+$. Da die Carbonylgruppe aufgrund der beschriebenen Bindungen planar ist, also in einer Ebene liegt und nicht frei drehbar ist, verhält sie sich wie ein Dipol.
$\ce{R1-\overset{\delta^+}{C}(=\overset{\delta^-}{O})-R2}$
Kennst du das?
Hast du auch schon einmal das Brennen bemerkt, wenn du Zwiebeln schneidest und deine Augen tränen? Das liegt am scharfen Gas Propenal, das von den Zellen der Zwiebeln freigesetzt wird. Dieses Molekül enthält eine Carbonylgruppe, die für die Reaktivität verantwortlich ist. Durch das Wissen über die Struktur und Reaktionsweise der Carbonylgruppe kannst du besser nachvollziehen, warum das Schneiden von Zwiebeln solche Tränen verursacht.
Reaktivität der Carbonylgruppe
Durch die Polarisierung der Carbonylgruppe wird auch ihre Reaktivität charakterisiert. Wie bereits besprochen, ist das Sauerstoffatom der Carbonylgruppe negativ polarisiert, womit es zu einem elektrophilen Zentrum wird. Das bedeutet, dass an ihm bevorzugt Elektrophile $\left(\text{E}^{+}\right)$ angreifen.
Die positive Polarisierung des Kohlenstoffatoms macht dieses zu einem nukleophilen Zentrum, an dem bevorzugt Nukleophile $\left(\text{Nu}^{-}\right)$ angreifen. In der folgenden Abbildung sind diese Zusammenhänge bildlich dargestellt.
Kontrovers diskutiert:
Expertinnen und Experten streiten darüber, ob Carbonylgruppen durch ihre Polarität tatsächlich immer reaktionsfreudiger sind als andere funktionelle Gruppen. Einige Chemikerinnen und Chemiker weisen darauf hin, dass neue Studien zeigen, dass die Reaktivität stark von der Molekülumgebung abhängt und nicht nur von der Polarität bestimmt wird. Andere halten jedoch an der traditionellen Sichtweise fest.
Nukleophiler Angriff auf die Carbonylgruppe
Ein Nukleophil ist ein Teilchen mit einem freien Elektronenpaar, das meist negativ geladen ist. Durch Angriff eines Nukleophils am nukleophilen Zentrum, dem Kohlenstoffatom der Carbonylgruppe, bildet sich ein negativ geladenes Ion, bei dem die negative Ladung am Sauerstoffatom sitzt. Dabei wandelt sich die sp2-Hybridisierung in eine sp3-Hybridisierung um. An dem gebildeten Ion kann nun wiederum sehr leicht ein elektrophiles Teilchen, zum Beispiel ein Wasserstoffion $\left(\ce{H+}\right)$, angreifen und es entsteht ein Alkohol.
Elektrophiler Angriff auf die Carbonylgruppe
Eine weitere Möglichkeit ist, dass am elektrophilen Zentrum – dem Sauerstoffatom der Carbonylgruppe – ein elektrophiles Teilchen angreift. Ein elektrophiles Teilchen sucht Elektronen, dabei kann es sich zum Beispiel wieder um ein Wasserstoffion $\left(\ce{H+}\right)$ handeln. Durch den Angriff entsteht ein positiv geladenes Carbeniumion $\left(\ce{(H2C-OH)+}\right)$. Das nukleophile Zentrum des Moleküls am Kohlenstoffatom wird dadurch verstärkt, sodass an diesem nun wiederum ein Nukleophil angreifen kann. Wieder entsteht ein Alkohol. Im Vergleich zum zuvor bereits beschriebenen nukleophilen Angriff wird durch den elektrophilen Angriff des Wasserstoffions an der Carbonylgruppe also lediglich der Angriff für schwache Nukleophile erleichtert.
Damit haben wir dir den Bau, die Eigenschaften und das Reaktionsverhalten der Carbonylgruppe erklärt. Dabei hast du erfahren, dass die Carbonylgruppe ein elektrophiles und ein nukleophiles Zentrum besitzt und dadurch von Elektrophilen und Nukleophilen angegriffen werden kann.
Ausblick – das lernst du nach Bau und Reaktionsverhalten der Carbonylgruppe
Hast du dich schon generell mit den funktionellen Gruppen der organischen Chemie beschäftigt? Damit erhältst du einen guten Überblick. Möchtest du mehr direkte Anwendungsbeispiele, wären Aldehyde und Ketone etwas für dich. Viel Spaß!
Zusammenfassung zur Carbonylgruppe
- Die Carbonylgruppe ist eine funktionelle Gruppe, die sich durch ein zweibindiges Sauerstoffatom $\left(\ce{=O}\right)$ an einem vierbindigen Kohlenstoffatom $\left(\ce{C}\right)$ auszeichnet.
- Man unterscheidet zwischen einem Keton, wenn das Kohlenstoffatom mit zwei organischen Resten abgesättigt ist $\left(\ce{R1-C(=O)-R2}\right)$, und einem Aldehyd, wenn einer der beiden Reste lediglich ein Wasserstoffatom ist $\left(\ce{R-CHO}\right)$.
- Die Carbonylgruppe ist polarisierbar, was sowohl einen nukleophilen als auch einen elektrophilen Angriff ermöglicht. Oft entsteht dabei ein Alkohol.
Darüber hinaus kannst du dein Wissen über die Carbonylgruppe in interaktiven Übungen überprüfen.
Falls du noch mehr über die Carbonylgruppe wissen möchtest, kannst du dir das Video Reduktion von Carbonylverbindungen ansehen. Viel Spaß!
Häufige Fragen zum Thema Carbonylgruppen
Transkript Bau und Reaktionsverhalten der Carbonylgruppe
Guten Tag und herzlich willkommen. In diesem Video geht es um den Bau und das Reaktionsverhalten der Carbonylgruppe. Das Video ist folgendermaßen strukturiert: 1. Aldehyde und Ketone. 2. Struktur der Carbonylgruppe. 3. Elektrophil und Nucleophil. 4. Reaktion am elektrophilen und nucleophilen Zentrum. 5. Zusammenfassung. 1. Aldehyde und Ketone Aldehyde und Ketone enthalten die Carbonylgruppe, die aus dem vierbindigen Kohlenstoffatom und einem zweibindigen Sauerstoffatom besteht. Die Carbonylgruppe ist gekennzeichnet durch die Kohlenstoff-Sauerstoff-Doppelbindung. Wenn eine der freien Bindungen durch einen organischen Rest R abgesättigt wird, und an der anderen Bindung am Wasserstoff H sitzt, so sprechen wir von einem Aldehyd. Man kann dafür auch abgekürzt schreiben: R-CHO. Wenn an beiden freien Bindungen organische Reste R und R' sitzen, so spricht man von einem Keton. Man kann auch abgekürzt schreiben: R Bindung CO-R'. Wir merken uns: die funktionelle Gruppe C Doppelbindung O, die in Aldehyden und Ketonen enthalten ist, bezeichnet man als Carbonylgruppe. Aldehyde und Ketone spielen eine große Rolle in der Chemie und Biochemie: in Aromastoffen, Vitaminen, Hormonen, Zuckern und beim Zuckerstoffwechsel. 2. Struktur der Carbonylgruppe Die erste Bindung zwischen dem Sauerstoffatom und dem Kohlenstoffatom der Carbonylgruppe wird durch 2 Orbitale verwirklicht. Es handelt sich hier um 2 sp2-Hybrid-Orbitale. Und daher spricht man von sp2-sp2-σ-Bindung. Außerdem gibt es jeweils zwei Orbitale, die nur weniger stark überlappen können. Es handelt sich hier jeweils um p-Orbitale. Und daher ist die zweite Bindung eine p-p-π-Bindung. Die π-Bindung ist bekanntlich im Vergleich zur σ-Bindung stark polarisierbar. Die funktionelle Carbonylgruppe stellt zusammen mit den angedeuteten Bindungen eine planare Struktur dar. Die Bindungswinkel betragen ziemlich genau 120°. 3. Elektrophil und nucleophil Bekanntermaßen ist ein Sauerstoffatom elektronegativer als ein Kohlenstoffatom. Daher befindet sich in der Carbonylgruppe am Sauerstoffatom eine negative Partialladung β minus und entsprechend am Kohlenstoffatom eine positive Partialladung β plus. Man kann die funktionelle Gruppe auch als mesomere Grenzstruktur derart formulieren, als ob das Sauerstoffatom das gesamte π-Elektronenpaar an sich anzieht. Dann bildet sich eine vollkommen negative Ladung am Sauerstoffatom und genauso eine vollkommen positive Ladung am Kohlenstoffatom heraus. Man kann beide mesomere Grenzstrukturen formulieren und mit ihnen bei der Beschreibung von Reaktionen arbeiten. Am Sauerstoffatom besteht somit ein elektrophiles Zentrum, während am Kohlenstoffatom ein nucleophiles Zentrum gebildet wird. Das kann man aus beiden mesomeren Grenzstrukturen erkennen. Das elektrophile Zentrum kann durch ein Elektrophil attackiert werden, während das nucleophile Zentrum dem Angriff von Nucleophilen ausgesetzt ist. Somit kann die Carbonylgruppe durch Elektrophile und Nucleophile angegriffen werden. 4. Reaktion am elektrophilen und nucleophilen Zentrum Ein Nucleophil ist ein Teilchen mit einem freien Elektronenpaar. Meist ist es negativ geladen. Ein Nucleophil greift am nucleophilen Zentrum der Carbonylgruppe an, das heißt am Kohlenstoffatom. Es bildet sich ein negativ geladenes Ion. Die sp2-Hybridisierung des Kohlenstoffatoms wandelt sich in eine sp3-Hybridisierung um. Das gebildete Ion kann nun sehr leicht mit elektronensuchenden Teilchen wie dem Wasserstoff-Ion reagieren. In unserem Fall bildet sich ein Alkohol. Die negative Ladung am Sauerstoffatom macht dieses zu einem elektrophilen Zentrum. Das Wasserstoffatom ist ein Elektrophil und kann damit reagieren. Als weiteres ist es auch möglich, dass das elektrophile Zentrum zuerst angegriffen wird. An der isomeren Grenzstruktur mit den komplett getrennten Ladungen kann man das besonders schön erkennen. Ein elektrophiles Wasserstoffion geht an die negative Ladung des Sauerstoffatoms. Es entsteht ein Carbeniumion, und die Stärke des nucleophilen Zentrums des Teilchens wächst. Das Carbeniumion kann nun sehr gut mit einem Nucleophil reagieren. Im Ergebnis der Reaktion entsteht ein Alkohol. Der Sinn des beginnenden Angriffs des Wasserstoffions besteht darin, dass schwachen Nucleophilen "geholfen" wird, die Carbonylgruppe anzugreifen. 5. Zusammenfassung Das Sauerstoffatom und das Kohlenstoffatom der Carbonylgruppe sind über eine sp2-sp2-σ-Bindung miteinander verbunden. Die zweite Bindung der Doppelbindung ist eine p-p-π-Bindung. Die Carbonylgruppe zusammen mit den Bindungsarmen stellt eine planare Struktur dar. Die Bindungswinkel betragen alle recht genau 120°. Die p-p-π-Bindung ist im Unterschied zur sp2-sp2-σ-Bindung stark polarisierbar. Daher ist es möglich, die Carbonylgruppe als funktionelle Gruppe mit entsprechenden Partialladungen zu schreiben, aber auch eine mesomere Grenzstruktur zu wählen, wo am Sauerstoffatom eine komplette negative Ladung und am Kohlenstoffatom eine komplette positive Ladung sitzen. Am Sauerstoffatom befindet sich demzufolge ein elektrophiles Zentrum; am Kohlenstoffatom sitzt ein nucleophiles Zentrum. Daher erfolgt ein Angriff eines Elektrophils auf das Sauerstoffatom, während Nucleophile das Kohlenstoffatom angreifen. Nach dem Angriff eines Elektrophils bildet sich ein Carbeniumion. Nach dem Angriff eines Nucleophils entsteht ein negatives Ion mit der negativen Ladung am Sauerstoffatom. Das Carbeniumion kann nun seinerseits durch ein Nucleophil angegriffen werden, während das negativ geladene Ion durch ein Elektrophil attackiert wird. Ich danke für die Aufmerksamkeit, alles Gute, auf Wiedersehen!
Bau und Reaktionsverhalten der Carbonylgruppe Übung
-
Nenne Vorkommen von Carbonyl-Verbindungen.
TippsMethanol ist der einfachste Alkohol.
Diethylether nennt man gewöhnlich einfach „Ether“.
Amine wie Ethylamin enthalten keinen Sauerstoff.
Thiole wie diese kurzkettige Verbindung enthalten keinen Sauerstoff.
LösungDie Carbonylgruppe ist die funktionelle Gruppe von Aldehyden und Ketonen. Sie besteht aus einem Kohlenstoffatom, an das ein Sauerstoffatom doppelt gebunden ist. Die Carbonylgruppe spielt in der Biochemie eine große Rolle:
- Sie ist vorhanden in Vitaminen und Hormonen.
- Sie ist molekularer Bestandteil von Zuckern.
- Sie spielt eine wichtige Rolle beim Zuckerstoffwechsel.
- Ether besitzen eine Sauerstoff-Brücke -O-.
- Alkohole haben eine Hydroxy-Gruppe -OH.
-
Erkläre die Ladungen in der Carbonylgruppe.
TippsDie Ungleichverteilung der Außenelektronen (Valenzelektronen) hat mit den Elektronegativitäten an den beiden verschiedenen Atomen der Carbonylgruppe zu tun.
Ein weiterer Grund für die Ladungen ist der Einfluss einer Grenzstruktur der Carbonylgruppe.
LösungIn der Carbonylgruppe herrscht eine Ungleichverteilung der Außenelektronen (Valenzelektronen) vor. Es bilden sich sogenannte Partialladungen. Diese sind nicht ganzzahlig. Die Ladung am Sauerstoff-Atom ist negativ, die Ladung am Kohlenstoff-Atom positiv. Für diese Tatsache lassen sich zwei Gründe benennen:
- Die Elektronegativität von Sauerstoff ist 3,5. Kohlenstoff hat eine Elektronegativität von 2,5. Das Sauerstoff-Atom zieht gemeinsame Elektronen stärker an als das Kohlenstoff-Atom.
- Für die Carbonylgruppe lässt sich eine bestimmte mesomere Grenzstruktur formulieren. In dieser Darstellung besitzt das Sauerstoff-Atom eine Ladung von minus eins und das Kohlenstoff-Atom eine Ladung von plus eins.
-
Entscheide, ob folgende Verbindungen Carbonyl-Verbindungen sind.
TippsDie Gruppe C=O ist in Carbonyl-Verbindungen ohne weitere funktionelle Gruppen enthalten.
Im Kohlenstoffdioxid-Molekül ist ein weiteres Sauerstoff-Atom mit dem CO verbunden.
In Carbonsäuren ist ein weiteres Sauerstoff-Atom mit der Carbonylgruppe verbunden.
LösungDie Entscheidung fällt nicht schwer. Man spricht von Carbonyl-Verbindungen nur dann, wenn die entsprechenden Moleküle nur Carbonyl-Gruppen und keine weiteren Atome (meist Sauerstoff-Atome) am Carbonyl enthalten. Die Stoffklassen, die durch die Carbonylgruppe als funktionelle Gruppe gekennzeichnet sind, sind daher nur die Aldehyde und Ketone. Folgende Verbindungen gehören damit nicht zu den Carbonyl-Verbindungen:
- Carbonsäuren wie Essigsäure,
- Kohlenstoffdioxid,
- Carbonate und Kohlensäure.
-
Erläutere die Polarisierbarkeit der Carbonylgruppe.
TippsPolarisierbarkeit beinhaltet die Fähigkeit der Carbonylgruppe, durch äußere Einwirkung eine höhere Polarisierung der Partialladungen zu erreichen.
Die ${\pi}$-Elektronen und die ${\sigma}$-Elektronen haben einen völlig verschiedenen Einfluss auf die Polarisierbarkeit der Carbonylgruppe.
${\pi}$-Elektronen sind stark delokalisierbar.
Die Delokalisierung von Elektronen erleichtert die Polarisierbarkeit eines Teilchens.
LösungMoleküle bewegen sich bei Temperaturerhöhung schneller. Druckerhöhung führt in der Regel zu einer Erhöhung der Dichte. Beide Tatsachen stehen jedoch in keinem Zusammenhang mit der Polarisierbarkeit. In einem elektrischen Feld werden die Partialladungen der Carbonylgruppe voneinander entfernt. Es kommt zur Polarisierung. Die Carbonyl-Bindung besitzt eine Doppelbindung. Eine Bindung der Doppelbindung ist eine ${\sigma}$-Bindung. Die andere Bindung ist eine ${\pi}$-Bindung. Bei der ${\sigma}$-Bindung ist die Überlappung der Elektronen groß. Die Delokalisierung der Elektronen ist gering. Ihr Beitrag zur Polarisierbarkeit der Carbonylgruppe ist klein. Bei der ${\pi}$-Bindung dagegen ist die Überlappung der Elektronen gering. Es gibt eine starke Delokalisierung der Elektronen. Das führt zu einer starken Erhöhung der Polarisierbarkeit der Carbonylgruppe.
-
Bestimme die Anzahl der Elektronen (Valenzelektronen) der Carbonylgruppe.
TippsEin Bindungsstrich symbolisiert ein Elektronenpaar.
Elektronen zwischen Atomen sind bindende Elektronen.
Elektronen, die nur zu einem Atom gehören, sind nichtbindende Elektronen.
Erinnere dich, über wie viel Elektronen ein Kohlenstoff-Atom oder ein Sauerstoff-Atom im Molekül verfügt.
LösungDie Summe der bindenden und der nichtbindenden Elektronen am Sauerstoff-Atom oder am Kohlenstoff-Atom ist jeweils acht entsprechend der Oktettregel. Ein Bindungsstrich bedeutet dabei jeweils ein Elektronenpaar. Um die Elektronenanzahl der Atome zu bestimmen, muss Folgendes beachtet werden:
- Bindungselektronen befinden sich zwischen den Atomen.
- Nichtbindende Elektronen befinden sich immer nur an einem Atom.
- Ein Kohlenstoff-Atom besitzt vier Außenelektronen.
- Das Kohlenstoff-Atom geht vier Bindungen ein, um acht genutzte Elektronen zu erhalten.
- Das Sauerstoff-Atom nutzt nur zwei Elektronen für Bindungen. Es hat vier nichtbindende Elektronen.
- Ein Paar an Elektronen sind immer zwei Elektronen.
-
Unterscheide zwischen nucleophilen und elektrophilen Teilchen.
TippsEin nucleophiles Teilchen weist immer einen Überschuss an Elektronen auf.
Ein elektrophiles Teilchen weist immer einen Mangel an Elektronen auf.
Ein Teilchen ohne Aktivität weist weder einen Überschuss noch einen Mangel an Elektronen auf.
LösungCarbonylverbindungen reagieren mit Verbindungen. Durch die Polarität der Carbonylgruppe entsteht an dem Sauerstoffatom ein elektrophiles Zentrum und an dem Kohlenstoffatom ein nucleophiles Zentrum. Die Carbonylgruppe kann also sowohl von Elektrophilen als auch von Nucleophilen angegriffen werden.
- Nucleophile haben entweder eine negative Ladung (Hydroxid, Wasser) oder nichtbindende Elektronen (Ammoniak, Wasser).
- Elektrophile sind positiv geladene Ionen (Kationen) wie das Proton ${H^+}$, das Natrium-Ion ${Na^+}$ und andere Ionen (${NO^+}$, ${NO_2}^+$).
- Teilchen ohne Aktivität erkennt man daran, dass sie keine Ladung besitzen und über keine nichtbindenden Elektronenpaare verfügen. Beispiele sind die Atome des Heliums und Kupfers sowie Gold. Auch die Methan-Moleküle erfüllen diese Bedingung.
Alkanone und Ketone – Einführung
Alkanone und Ketone – Einführung (Expertenwissen)
Aldehyde
Aldehyde und Ketone – Herstellung und Eigenschaften
Aldehyde und Ketone - Addition primärer Amine
Aldehyde – Reaktionen
Aldehyd – Nachweise
Aldehydnachweise – Fehling-Probe und Tollens-Probe
Eigenschaften und Verwendung von Formaldehyd
Bau und Reaktionsverhalten der Carbonylgruppe
Ketone – Reaktionen
Ketone – Reaktionen (Expertenwissen)
Aceton
Keto-Enol-Tautomerie
Mechanismus der Aldolreaktion
Aldol-Kondensation
Chemie der Düfte
8.883
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.851
Lernvideos
37.611
Übungen
33.728
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Cellulose Und Stärke Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel Und Die Dynamit Entdeckung
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindungen
- Wasserhärte
- Peptidbindung
- Fermentation
Völlig richtig. Vielen Dank für die Bemerkung.
Alles Gute
4:14 Muss es nicht genau andersherum sein? Das C-Atom ist durch die positive Partialladng doch elektrophil, oder nicht?