Sinus, Cosinus und Tangens – Anwendungsaufgaben

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Sinus, Cosinus und Tangens – Anwendungsaufgaben
Nach dem Schauen dieses Videos wirst du in der Lage sein, mit Sinus, Cosinus und Tangens zu rechnen.
Zunächst wiederholst du , wie Sinus, Cosinus und Tangens definiert sind. Anschließend werden ein paar Übungsaufgaben gerechnet.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Sinus, Cosinus, Tangens, rechtwinkliges Dreieck, Gegenkathete, Ankathete und Hypotenuse.
Bevor du dieses Video schaust, solltest du bereits wissen, wie Sinus, Cosinus und Tangens im rechtwinkligen Dreieck definiert sind.
Nach diesem Video wirst du darauf vorbereitet sein, zu lernen, wie Sinus, Cosinus und Tangens am Einheitskreis definiert werden können.
Transkript Sinus, Cosinus und Tangens – Anwendungsaufgaben
Die Baldwin Street in Dunedin , Neuseeland ist die steilste Straße der Welt! An ihrer steilsten Stelle hat sie ein Steigung von 34,8 Prozent! Wie viele Höhenmeter man wohl geschafft hat, wenn man sie erklommen hat? Diese Frage können wir mit Hilfe der Trigonometrie beantworten! Lass uns also nochmal einen Blick auf „Sinus, Cosinus und Tangens“ werfen! Sinus, Cosinus, und Tangens, sind durch Seitenverhältnisse im rechtwinkligen Dreieck definiert. Der Sinus von Alpha ist gleich Gegenkathete von Alpha durch Hypotenuse, der Cosinus von Alpha gleich Ankathete von Alpha durch Hypotenuse, und der Tangens von Alpha ist gleich Gegenkathete durch Ankathete. Mit Hilfe dieser drei Formeln können wir unbekannte Größen in einem rechtwinkligen Dreieck berechnen. Dazu brauchen wir mindestens zwei Angaben über Winkelgröße und Seitenlängen. Dann müssen wir nur noch überlegen, welche der drei Formeln uns weiterhilft, und können mit dieser dann die gesuchte Größe berechnen. Ein erstes Beispiel. Gegeben ist dieses rechtwinklige Dreieck mit Alpha gleich fünfunddreißig Grad, und der „Seite c“ mit einer Seitenlänge von sieben Zentimetern. Gesucht ist die Länge von „Seite b“. Wie bekommen wir die jetzt heraus? Als erstes sollten wir den Seiten des Rechtecks die entsprechenden Begriffe zuordnen. Die Hypotenuse liegt dem rechten Winkel gegenüber. Das ist hier „Seite c“. Dann schauen wir auf den bekannten Winkel Alpha. Die Dreiecksseite, die ihm anliegt, ist die Ankathete. Die Dreiecksseite, die ihm gegenüberliegt, ist die Gegenkathete. Hier muss man manchmal ganz schön aufpassen, um nicht durcheinander zu kommen. Jetzt ist uns klar: Wir haben die Länge der Hypotenuse gegeben, und suchen die Länge der Ankathete. Für die Berechnung brauchen wir also die Formel des Cosinus! Wir setzen die gegebenen Werte ein, und stellen nach b um. Jetzt müssen wir nur noch den Cosinus von fünfunddreißig Grad berechnen – dazu benutzen wir den Taschenrechner. Wir müssen darauf achten, dass der Taschenrechner im Modus „D-E-G“ ist. Das steht für „degree“, also für die Maßeinheit Grad. Schon haben wir die gesuchte Seitenlänge: circa 5,73 Zentimeter. Ein weiteres Beispiel. In diesem rechtwinkligen Dreieck ist die „Seite a“ sechs, und die „Seite c“ acht Zentimeter lang. Gesucht ist dieses mal der Winkel Alpha, der hier liegt. Zuerst verschaffen wir uns wieder einen Überblick. „Seite c“ liegt dem rechten Winkel gegenüber. Das ist also unsere Hypotenuse. Die andere bekannte Größe – Seite a – liegt gegenüber von unserem Winkel Alpha. Es handelt sich somit um die Gegen- und nicht um die Ankathete von Alpha. Wir kennen also die Länge von Gegenkathete und Hypotenuse. Daher nutzen wir den Sinus! Der Sinus von Alpha ist gleich Gegenkathete durch Hypotenuse. Also gleich sechs Zentimeter geteilt durch acht Zentimeter, gekürzt drei Viertel. Jetzt müssen wir die Umkehrfunktion des Sinus nutzen – den Arkussinus. Alpha ist also gleich dem Arkussinus von 0,75. Wir geben das in den Taschenrechner ein. Auf vielen Taschenrechnern ist der Arkussinus abgekürzt mit „Sinus hoch minus eins“. So erhalten wir das Ergebnis: circa 48,6 Grad! Na dann können wir uns ja jetzt nochmal der Baldwin Street widmen. Folgende Informationen haben wir gegeben. Auf dem steilsten Abschnitt der Straße beträgt der durchschnittliche Steigungswinkel 16,3 Grad. Dieser Abschnitt ist außerdem einhunderteinundsechzig Meter lang. Und hier haben wir einen rechten Winkel. Wir wollen untersuchen, wie viele Höhenmeter auf dieser Strecke hinzukommen. Wir beschriften die unbekannte Größe mit einem x. Pausiere das Video doch kurz und überlege selbst, dann gehen wir die Lösung gemeinsam durch. Da die gegebene Seitenlänge an dem bekannten Winkel liegt und diesen mit dem rechten Winkel verbindet, kennen wir die Länge der Ankathete. Gesucht ist die Länge der Seite, die unserem Winkel gegenüberliegt, sprich der Gegenkathete. Dafür können wir die Formel des Tangens nutzen. Wir setzen unsere Werte ein, und stellen um. Es sind also circa siebenundvierzig Höhenmeter! Ganz schön sportlich! Während es bergauf geht, fassen wir nochmal zusammen. Wenn wir mit Sinus, Cosinus und Tangens im rechtwinkligen Dreieck rechnen, sollten wir uns zuerst immer klar machen, um welche Dreiecksseiten es sich bei den gegebenen und gesuchten Größen handelt. Denn nur so können wir uns sicher sein, welche der drei Formeln wir für unsere Rechnung benötigen. Anschließend müssen wir dann nur noch die gegebenen Werte einsetzen und die Gleichung nach der gesuchten Größe umstellen. Wenn wir mit Hilfe von zwei Seitenlängen eine Winkelgröße berechnen sollen, müssen wir daran denken, die jeweilige Umkehrfunktion von Sinus, Cosinus und Tangens auf unserem Taschenrechner zu verwenden. Am wichtigsten ist es aber, die Seiten im rechtwinkligen Dreieck richtig zuzuordnen. Wenn wir das einmal geschafft haben und so die passende Formel ausgewählt haben, geht es für den Rest der Rechnung ganz entspannt bergab. In diesem Sinne: volle Fahrt voraus!
Sinus, Cosinus und Tangens – Anwendungsaufgaben Übung
-
Beschreibe die Zusammenhänge bei Sinus, Cosinus und Tangens.
-
Gib an, welche Winkelfunktion zur Berechnung angewendet wird.
-
Ermittle, in welchem Winkel die Sonnenstrahlen auf den Boden treffen.
-
Ordne die Dreiecke nach der Länge der Seite .
-
Benenne die Seiten im rechtwinkligen Dreieck mit den passenden Fachbegriffen.
-
Berechne den Steigungswinkel und die Steigung in Prozent.
9.209
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.117
Lernvideos
37.110
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter
super erklärt!
Gleich Beim ersten Mal verstanden .. wünschte die Lehrer würden das auch mal so erklären.
Hallo arda, danke für deine Rückmeldung! Allerdings stimmt der Wert im Video. Du musst bei de Rechnung darauf achten, dass du den Arkussinus verwendest und dein Taschenrechner auf Gradmaß (deg) eingestellt ist. Ich hoffe, dass wir dir helfen konnten. Liebe Grüße aus der Redaktion!
Bei Minute 3:46 kommt bei mir als Winkel 41,41 raus. Ich habe wie im Video gerechnet. Wieso?
Sehr Gut zu verstehen