Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck
Nach dem Schauen dieses Videos wirst du in der Lage sein, Längenbestimmungen in rechtwinkligen Dreiecken durch Anwendung des Sinus, Kosinus und Tangens durchzuführen.
Zunächst lernst du, wo du die Katheten und Hypotenuse bei einem rechtwinkligen Dreieck findest. Anschließend definieren wir die trigonometrischen Beziehungen Sinus, Kosinus und Tangens. Abschließend lernst du, wie du ausgehend von einem spitzen Winkel und einer Seitenlänge eines rechtwinkligen Dreiecks entscheiden kannst, welche der drei trigonometrischen Beziehungen für die Berechnung der fehlenden Seiten geeignet sind.
Lerne etwas über die Längenbestimmung in rechtwinkligen Dreiecken, indem du dir von Kevin die trigonometrischen Beziehungen Sinus, Kosinus und Tangens zeigen lässt.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie das rechtwinklige Dreieck, die trigonometrischen Beziehungen, den Sinus, den Kosinus, den Tangens, den Winkel, die Seitenlänge, die Kathete und die Hypotenuse.
Bevor du dieses Video schaust, solltest du bereits wissen, was ein rechtwinkliges Dreieck und die Bezeichnungen Kathete und Hypotenuse sind.
Nach diesem Video wirst du darauf vorbereitet sein, den Sinus- und Kosinussatz zu lernen.
Transkript Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck
Kevin ist allein in New York unterwegs. Er möchte wissen, wie hoch die Freiheitsstatue ist.
Mit Winkel und Länge die Höhe berechnen - Beispiel Freiheitsstatue
Dabei wird ihm die Angabe des Beobachtungswinkels in dem Fernglas helfen. Denn wann immer uns Längen- und Winkelangaben begegnen, helfen uns der Sinus, der Cosinus und der Tangens. Schauen wir uns die Situation doch einmal genauer an: Kevin steht auf einer Aussichtsplattform 500 m von der Freiheitsstatur entfernt. Das Fernglas zeigt ihm einen Beobachtungswinkel von 10,5° an. Du siehst, es ergibt sich ein rechtwinkliges Dreieck.
Aufbau eines rechtwinkligen Dreieckes
Du weißt bereits, dass die Seite gegenüber des Rechten Winkels Hypotenuse heißt. Und die beiden anderen Seiten heißen Katheten. Es handelt sich um besondere Katheten, denn diese Seite liegt gegenüber von dem Winkel α (Alpha). Deshalb heißt sie Gegenkathete. Diese Seite liegt direkt an dem Winkel. Wir nennen sie deshalb Ankathete.
Was sind Sinus, Kosinus und Tangens?
Sinus, Kosinus und Tangens von α beschreiben das Verhältnis dieser drei Seiten zueinander. Das Verhältnis der Länge der Gegenkathete zur Hypothenusenlänge wird durch den Sinus vom Winkel α ausgedrückt. Also ist Sinus α gleich Gegenkathete durch Hypotenuse. Das Verhältnis aus Ankathete zur Hypothenuse, ist der Kosinus von α, d. h. Kosinus α ist Ankathete durch Hypothenuse. Das Verhältnis von der Länge der Gegenkathete zu der Länge der Ankathete wird über den Tanges von α beschrieben. Tanges α ist Gegenkathete durch Ankathete. Jetzt kennst du die Formeln für den Sinus, den Kosinus und den Tangens im rechtwinkligen Dreieck.
Welche Formel verwenden wir zur Berechnung?
Also zurück zu unserer Ausgangssituation! Wir möchten die Höhe der Statur berechnen. Das ist die Gegenkathete zu dem Winkel α = 10,5°. Die Länge der Hypothenuse kennst du nicht, aber die Entfernung von Kevin zu der Statur. Es sind 500 Meter. Diese Seite ist die Ankathete zum Winkel α. Ein Blick auf die Formeln verrät dir, dass du den Tangens von α verwenden musst. Denn in den beiden anderen Formeln kommt die Hypothenuse vor, die dir hin dieser Rechnung aber nicht gegeben ist. Du stellst die Formel nach der gesuchten Größe, also der Gegenkathete um. Nun setzt du die gegebenen Werte in die Formel ein. Achte beim Ausrechnen darauf, dass dein Taschenrechner auf "Degree" gestellt ist! Du erhälst 92,7 Meter. Die Freiheitsstatur ist also 92,7 Meter hoch.
Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck Übung
9.143
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.075
Lernvideos
37.159
Übungen
33.471
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal
Sehr gut erklärt. Kome leider nicht auf das Ergebnis, weil ich nicht weiss wie man das in den Taschenrechner eingibt.
sehr tolles video super erklärt !
Hat mir sehr geholfen, mehr solcher Videos!
Sehr anschaulich!
Vielen Dank jetzt kann ich es viel besser
PS. Du gibst dir viel Mühe mit deinen Videos.
Weiter so👍