Weg, Geschwindigkeit, Zeit – unterschiedliche Richtungen
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Weg, Geschwindigkeit, Zeit – unterschiedliche Richtungen
Nach dem Schauen dieses Videos wirst du in der Lage sein, Weg, Geschwindigkeit und Zeit zu berechnen.
Zunächst lernst du, wie du einen Weg mithilfe von Geschwindigkeit und Zeit berechnen kannst. Anschließend siehst du, wie dir ein Dreieck dabei helfen kann dir die Formeln zu merken. Abschließend lernst du, wie du auch die anderen Werte berechnen kannst, indem du die Formel umstellst.
Lerne etwas über das Berechnen von Weg, Geschwindigkeit und Zeit während du die Aufprall-Position von zwei Autos bestimmst.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Weg, Geschwindigkeit und Zeit.
Transkript Weg, Geschwindigkeit, Zeit – unterschiedliche Richtungen
Tim Carcrashian, sein Name ist Programm, arbeitet als Autocrash-Experte. Sein Job ist es, Verkehrsunfälle zu simulieren und mit einer Slow-Motion-Kamera zu filmen. Das Einstellen der Kamera ist besonders aufwendig. Denn Tim muss dafür genau berechnen, wann und wo es zu einer Kollision kommt. Helfen wir ihm dabei! Dafür brauchen wir die Größen Weg, Geschwindigkeit und Zeit. Bei der Simulation fahren Auto 1 und Auto 2 aufeinander zu. Auto 1 passiert den Punkt A mit einer Geschwindigkeit von 50 km/h. Auto 2 passiert Punkt B mit 70 km/h. Der Weg zwischen den Punkten A und B ist 1,2 km. Wo und wann werden die Autos kollidieren? Lass uns die Antwort gemeinsam herausfinden. Der Weg ist gleich Geschwindigkeit mal Zeit. Übrigens kannst du auch sagen: s ist gleich v mal t. Dieses Dreieck hilft, dir die Formel zu merken. Los geht's. In einer Tabelle kannst du die gegebenen Informationen zusammenfassen. Zuerst trägst du die Werte ein, die du bereits kennst: die Geschwindigkeit der Autos 1 und 2. Da wir den Wert für die Zeit nicht kennen, schreibst du hier die Variable 't' hinein. Damit lassen sich zwei Gleichungen aufstellen: s = 50t. Und s = 70t. Auch das tragen wir in unsere Tabelle ein. Da beide Autos zusammen insgesamt 1,2 km fahren, können wir damit eine neue Gleichung aufstellen und dann nach t auflösen. 1,2 = 50t + 70t. Heraus kommt: t = 0,01 Stunden. Das übertragen wir in die Tabelle. Jetzt können wir diesen Wert nutzen, um den Weg zu berechnen, den beide Autos fahren werden, bevor sie kollidieren. s = 50 mal 0,01. Das ergibt 0,5. s = 70 mal 0,01. Das ist 0,7. Großartig! Tim ist hochzufrieden. Tim hat also berechnet, dass Auto 1 einen halben Kilometer, und Auto 2 genau 700 Meter fahren, bevor es kracht. Außerdem kann Tim nun auch genau sagen, wann es zum Crash kommen wird: nämlich nach 36 Sekunden, also 1/100 einer Stunde. Er nimmt also alle Einstellungen seiner Slow Motion-Kamera vor. Vielleicht, so tagträumt Tim, kriegt er schon bald eine Lohnerhöhung für seine hervorragende Arbeit. Doch welch ein Mist! Tim erfährt kurz darauf, dass die Teststrecke erneuert wird, um die Simulationen noch präziser zu machen. Deshalb wird die rechte Spur während der Bauarbeiten verkürzt. Anstatt eines halben Kilometers auf der linken und 0,7 Kilometer auf der rechten Spur ist die rechte Fahrbahn nur noch 0,4 Kilometer lang. Da das Neueinstellen der Kamera zu teuer und aufwendig wäre, muss der Crash an der ursprünglichen Stelle stattfinden. Weg und Zeit können nicht verändert werden, aber dafür die Geschwindigkeit von Auto 2. Lass uns die Geschwindigkeit mit der bewährten Formel berechnen. Wie gehabt, gilt: s = v mal t. Für die Geschwindigkeit teilen wir Weg durch Zeit. v = 0,4 durch 0,01. Die Geschwindigkeit beträgt also 40 km/h. Wenn Auto 2 also mit einer Geschwindigkeit von 40 km/h für 0,4 Kilometer fährt, kommt es wie geplant nach 0,01 Stunden zur Kollision. Eine Woche später sind die Bauarbeiten an der Teststrecke abgeschlossen. Tims Chef möchte eins der Autos mit hoher Geschwindigkeit fahren lassen. Deshalb wird Auto 2 mit 90 km/h fahren. Tim hat keine Zeit, die Kamera neu auszurichten. Was tun? Er kann Zeit und Geschwindigkeit zwar nicht verändern, aber dafür den Weg von Auto 2. Wenn Auto 2 mit 90 km/h für 0,01 Stunden fahren soll, kannst du die Formel verwenden, um die neue Länge des Wegs für Auto 2 zu berechnen. Wieder einmal ist Weg gleich Geschwindigkeit mal Zeit. 90 mal 0,01 = 0,9 Kilometer. Auto 2 muss also einen Weg von 0,9 Kilometern mit 90 km/h für 0,01 Stunden fahren. Fassen wir zusammen: Das Dreieck kann dir helfen, dir die Formeln zu Weg, Zeit und Geschwindigkeit zu merken. t = s geteilt durch v. v = s geteilt durch t. s = v mal t. Nach all der Arbeit wird Tim nun mit einem filmreifen Crash belohnt. Ups. Das war aber nicht das Testauto! Das war das Auto von Tims Chef...
Weg, Geschwindigkeit, Zeit – unterschiedliche Richtungen Übung
-
Bestimme die korrekten Aussagen zu Objekten, die sich in unterschiedliche Richtungen bewegen.
TippsDu kannst die letzte Variable einer Formel berechnen, wenn du alle bis auf diese Variable gegeben hast.
Zwei Objekte können nur zusammenstoßen, wenn sie zur gleichen Zeit am gleichen Ort sind.
LösungDiese Aussagen sind falsch:
„Die für die Berechnung notwendigen Größen hängen wie folgt zusammen: Zeit ist gleich Geschwindigkeit mal Weg."
- In der Formel ist die Zeit gleich Weg geteilt durch Geschwindigkeit, also $t=\frac{s}{v}$.
- Du kannst die letzte Variable einer Formel berechnen, wenn du alle bis auf diese Variable gegeben hast. Eine Formel kann allerdings beliebig viele Variablen haben. Beispielsweise kannst du die letzte Variable einer Formel mit insgesamt zehn Größen erst berechnen, wenn du neun dieser Größen gegeben hast.
„Starten zwei Objekte gleichzeitig und bewegen sich mit unterschiedlicher Geschwindigkeit aufeinander zu, ist die Zeit, die bis zum Aufprall vergeht, für beide Objekte gleich.“
- Zwei Objekte können nur zusammenstoßen, wenn sie zur gleichen Zeit am gleichen Ort sind. Wenn sie also zur gleichen Zeit starten, muss für beide gleich viel Zeit vergangen sein.
„Bewegen sich zwei Objekte aufeinander zu, legen sie gemeinsam die Distanz zwischen ihnen zurück. Das heißt, dass sich beim Zusammenstoß die zurückgelegten Strecken der einzelnen Objekte zur gesamten anfänglichen Distanz addieren.“
- Wenn die Objekte zuvor eine bestimmte Distanz zueinander hatten und anschließend am gleichen Ort sind, muss genau diese Strecke zurückgelegt worden sein.
-
Berechne die Zeit und den Ort des Crashs zweier Autos.
TippsIn die allgemeine Formel für die zurückgelegte Strecke kannst du die gegebenen Größen einsetzen.
Die Autos bewegen sich gleichmäßig aufeinander zu. Insgesamt müssen sie eine bestimmte Strecke zurücklegen. Das kannst du ausnutzen, um die vergangene Zeit zu berechnen.
LösungDie Lücken kannst du so vervollständigen:
„Die Strecke $s$, die jedes Auto nach einer bestimmten Zeit $t$ zurückgelegt hat, kannst du angeben durch:
$s=v \cdot t$
Damit gilt für Auto $1$:
$s_1=50 \cdot t$
Und für Auto $2$ gilt:
$s_2=70 \cdot t$
- Die allgemeine Formel für eine zurückgelegte Strecke lautet $s=v \cdot t$. Hier kannst du die gegebenen Größen einsetzen.
$s_1+s_2=1,\!2$
Setzt du die Größen ein, kannst du die Zeit ausrechnen:
$50 \cdot t + 70 \cdot t=1,\!2$
Also erhältst du für die vergangene Zeit: $t=0,\!01\text{h}$
- Die Autos bewegen sich gleichmäßig aufeinander zu. Insgesamt müssen sie eine Strecke von $1,2~\text{km}$ zurücklegen. Das kannst du ausnutzen, um die vergangene Zeit zu berechnen. Diese muss für beide Autos gleich sein.
$s_1=50 \cdot 0,\!01=0,\!5$
Das erste Auto hat also bis zum Crash eine Strecke von $0,\!5~\text{km}$ zurückgelegt. Für das zweite Auto erhältst du:
$s_1=70 \cdot 0,\!01=0,\!7$.
Es legte also $0,\!7~\text{km}$ zurück.
- Mit der berechneten Zeit kannst du die zurückgelegten Strecken der Autos bestimmen. In Aufgaben mit verschiedenen bewegten Objekten ist es immer hilfreich, zuerst die vergangene Zeit zu bestimmen.
-
Berechne die Zeit und den Ort des Zusammenstoßes zweier Motorräder.
TippsDie Strecke $s$, die jedes Motorrad nach einer bestimmten Zeit $t$ zurückgelegt hat, kannst du angeben durch:
$s=v \cdot t$
Stelle eine Gleichung für die zurückgelegte Strecke jedes Motorrads auf.
LösungDie gesuchten Größen kannst du folgendermaßen berechnen. Die Einheiten lassen wir in den Rechnungen weg. Das dient der Übersichtlichkeit.
Die Formel für die Strecke, die das erste Motorrad nach einer Zeit $t$ zurücklegt, lautet:
$s_1=30 \cdot t$
Die Formel für das zweite Motorrad lautet:
$s_2=20 \cdot t$
Zusammen legen die beiden Motorräder eine Strecke von $1~\text{km}$ zurück. Daraus ergibt sich:
$s=s_1+s_2=30 \cdot t+20 \cdot t=1$
Nach $t$ aufgelöst ergibt das: $t=0,\!02 ~\text{h}$. Das können wir in die Formeln für die Strecken $s_1$ und $s_2$ einsetzen und erhalten:
$s_1=0,\!6 ~\text{km}$
$s_2=0,\!4 ~\text{km}$
-
Ermittle die fehlenden Geschwindigkeiten.
TippsÜberlege dir, welche Strecke in welcher Zeit zurückgelegt werden muss und wende dann folgende Formel an:
$v=\frac{s}{t}$
LösungSo kannst du die Geschwindigkeiten berechnen:
Janina muss $4~\text{km}$ zurücklegen. Wenn sie mit einer Geschwindigkeit von $4~\frac{\text{km}}{\text{h}}$ läuft, braucht sie genau eine Stunde, denn:
$t=\dfrac{s}{v}=\dfrac{4~\text{km}}{4~\frac{\text{km}}{\text{h}}}= 1 ~\text{h}$
Joachim läuft $8~\text{km}$, die er in einer Stunde zurücklegen muss. Also braucht er eine Geschwindigkeit von:
- $v=\dfrac{s}{t}=\dfrac{8~\text{km}}{1~\text{h}}=8~\frac{\text{km}}{\text{h}}$
- $v=\dfrac{s}{t}=\dfrac{8~\text{km}}{\frac{2}{3}~\text{h}}=12~\frac{\text{km}}{\text{h}}$
- $v=\dfrac{s}{t}=\dfrac{6~\text{km}}{1~\text{h}}=6~\frac{\text{km}}{\text{h}}$
- $v=\dfrac{10~\text{km}}{1~\text{h}}=10~\frac{\text{km}}{\text{h}}$
-
Ergänze die fehlenden Werte.
TippsUm die Tabelle zu vervollständigen, musst du die Größen in Verbindung setzen. Dafür kannst du folgende Formel verwenden und sie so umstellen, dass du die gesuchte Größe berechnen kannst:
$v=\frac{s}{t}$
Für die Berechnung einer Strecke bringst du die Formel in folgende Form:
$s=v \cdot t$
LösungUm die Tabelle zu vervollständigen, musst du die Größen in Verbindung setzen. Dafür kannst du die Formel
$v=\frac{s}{t}$
verwenden und sie so umstellen, dass du die gesuchte Größe berechnen kannst.
Für die erste Geschwindigkeit erhältst du:
$v=\frac{s}{t}=\frac{0,5~\text{km}}{0,01~\text{h}}= 50~\frac{\text{km}}{\text{h}}$
Die erste Zeit berechnest du durch:
$t=\frac{s}{v}=\frac{0,7~\text{km}}{70~\frac{\text{km}}{\text{h}}}= 0,\!01~\text{h}$
Für die erste Strecke erhältst du:
$s=v \cdot t=90~\frac{\text{km}}{\text{h}} \cdot 0,\!01~\text{h} = 0,\!9~\text{km}$
Damit kannst du die Tabelle vervollständigen zu:
$\begin{array}{l|l|l} \text{Strecke in km} & \text{Zeit in h} & \text{Geschwindigkeit in } \frac{\text{km}}{\text{h}} \\ \hline 0,\!5 & 0,\!01& 50\\ 0,\!7 & 0,\!01& 70\\ 0,\!9 & 0,\!01&90 \\ 1,\!2 & 0,\!01& 120\\ \end{array}$
-
Erschließe, ob der Ball im Tor landet.
TippsUm zu bestimmen, welche der Geschwindigkeitsangaben auf das Tor treffen, musst du zuerst bestimmen, wann der Ball die $11~\text{m}$ zum Tor zurückgelegt hat. Dann setzt du diese Zeit in die Formel der Geschwindigkeit $v_y$ ein, welche die Bewegung des Balls in Richtung der Ecke des Tors beschreibt. So kannst du die Strecke ausrechnen, die der Ball in diese Richtung zurücklegt. Ist diese Strecke kleiner als $3$, trifft der Ball aufs Tor.
Wird der Ball mit $v_x=25~\frac{\text{m}}{\text{s}}$ und $v_y=2~\frac{\text{m}}{\text{s}}$ geschossen, kannst du zunächst die Zeit, die der Ball zum Tor benötigt, so berechnen:
$t=\frac{x}{v_x}=\frac{11~\text{m}}{25~\frac{\text{m}}{\text{s}}}= 0,\!44 ~\text{s}$
Anschließend überprüfst du, wie weit der Ball in dieser Zeit in $y$-Richtung geflogen ist:
$y=v_y \cdot t = 2~\frac{\text{m}}{\text{s}} \cdot 0,\!44~\text{s} = 0,88~\text{m}$
Da der Ball in $y$-Richtung nur $0,\!88~\text{m}$ geflogen ist, was weniger als die $3~\text{m}$ zum Pfosten sind, landet der Ball im Tor.
LösungUm zu bestimmen, welche der Geschwindigkeitsangaben auf das Tor treffen, musst du zuerst bestimmen, wann der Ball die $11~\text{m}$ zum Tor zurückgelegt hat. Dann setzt du diese Zeit in die Formel der Geschwindigkeit $v_y$ ein, welche die Bewegung des Balls in Richtung der Ecke des Tors beschreibt. So kannst du die Strecke ausrechnen, die der Ball in diese Richtung zurücklegt. Ist diese Strecke kleiner als $3$, trifft der Ball aufs Tor. Zum Beispiel erhältst du für:
„Die dritte Schützin Johanna tritt den Ball mit Geschwindigkeitskomponenten von $v_x=20~\frac{\text{m}}{\text{s}}$ und $v_y=6~\frac{\text{m}}{\text{s}}$.“
Die Zeit, die der Ball zum Tor benötigt, beträgt:
$t=\frac{x}{v_x}=\frac{11~\text{m}}{20~\frac{\text{m}}{\text{s}}}= \frac{11}{20}~\text{s}$
Die Variable $x$ bezeichnet die Strecke, die der Ball in diese Richtung zurücklegt. Setzen wir die berechnete Zeit in die Gleichung der Geschwindigkeit in $y$-Richtung ein, erhalten wir:
$y=v_y \cdot t = 6~\frac{\text{m}}{\text{s}} \cdot \frac{11}{20}~\text{s} = \frac{66}{20}~\text{m} \approx 3,\!3 ~\text{m} $
Dieser Schuss geht also am Tor vorbei. Die Variable $y$ bezeichnet die Strecke, die der Ball in diese Richtung zurücklegt. Die anderen Schüsse kannst du analog analysieren. So erhältst du:
Folgender Schuss geht auch nicht aufs Tor:
“Alyssas zweiter Schuss gelingt mit Geschwindigkeitskomponenten von $v_x=15~\frac{\text{m}}{\text{s}}$ und $v_y=5~\frac{\text{m}}{\text{s}}$.“
- Hier trifft der Ball $3,\!\bar{6}~\text{m}$ vom Mittelpunkt des Tors entfernt auf.
„Alyssas erster Schuss gelingt mit einer Geschwindigkeit zum Tor von $v_x=11~\frac{\text{m}}{\text{s}}$ und einer Geschwindigkeit vom Mittelpunkt entfernt von $v_y=2~\frac{\text{m}}{\text{s}}$.“
- Hier trifft der Ball $2~\text{m}$ vom Mittelpunkt des Tors entfernt auf.
- Hier trifft der Ball $2,\!9\bar{3}~\text{m}$ vom Mittelpunkt des Tors entfernt auf.
- Hier trifft der Ball ca. $2,\!54~\text{m}$ vom Mittelpunkt des Tors entfernt auf.
Formeln in der Mathematik
Formeln umstellen
Versteckte lineare Gleichungen
Gleichungsumformungen mit den Grundrechenarten
Gleichungsumformungen in Potenz- und Bruchgleichungen
Gleichungsumformungen mit Potenzen und Wurzeln
Gleichungsumformungen in Exponential- und Logarithmusgleichungen
Weg, Zeit, Geschwindigkeit – gleiche Richtung
Weg, Geschwindigkeit, Zeit – unterschiedliche Richtungen
8.906
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.867
Lernvideos
37.599
Übungen
33.716
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
Gut erklärt 😀
Hallo
Wie haben die herausgefunden das t=0,01 h ist ?
COOL
LG
𝒸𝒴®