Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Dotierung von Halbleitern

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Dotierung Halbleitern Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 34 Bewertungen
Die Autor*innen
Avatar
Jochen Kalt
Dotierung von Halbleitern
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Dotierung von Halbleitern

In diesem Video beschäftigen wir uns mit der Dotierung von Halbleitern. Dotierte Halbleiter haben besondere Eigenschaften und befinden sich in allen elektronischen Geräten wie z.B. Computern, Handys und vielen mehr. Ich werde dir Schritt für Schritt erklären, was man unter Dotierung von Halbleitern versteht. Dazu wiederholen wir zuerst, was die Eigenleitung beschreibt und wie man reine und Verbindungshalbleiter unterscheidet. Außerdem lernst du, wie ein reiner Halbleiter aufgebaut ist. Danach wirst du lernen, was man unter Dotierung genau versteht und was der Unterschied zwischen n- und p-Dotierung ist.

Transkript Dotierung von Halbleitern

Hallo und herzlich willkommen. Heute beschäftigen wir uns mit dem Dotieren von Halbleitern. Dotierte Halbleitern haben im Unterschied zu reinen Halbleitern besondere Eigenschaften und befinden sich in allen elektronischen Geräten, wie zum Beispiel Computern, Handys und vielen mehr. In diesem Video werde ich dir Schritt für Schritt erklären, was man unter Dotierung von Halbleitern versteht. Dazu wiederholen wir zuerst, was die Eigenleitung beschreibt und wie man reine und Verbindungshalbleitern unterscheidet. Außerdem lernst du, wie ein reiner Halbleiter aufgebaut ist. Danach zeige ich dir, was man unter Dotierung genau versteht und was der Unterschied zwischen N- und P-Dotierung ist. Und damit kann es auch schon losgehen. Zuerst beschäftigen wir uns mit der sogenannten Eigenleitung von Halbleitern. Unter Eigenleitung versteht man, dass Halbleitern fähig sind, elektrischen Strom zu leiten. Dabei ist die elektrische Leitfähigkeit in Halbleitern von der Temperatur abhängig. Bei tiefen Temperaturen leitet ein Halbleiter nur sehr schlecht und verhält sich somit wie ein Isolator. Mit steigender Temperatur nähert sich die elektrische Leitfähigkeit des Halbleiters dann immer mehr der eines Leiters an, bis sich der Halbleiter schließlich wie ein Leiter verhält. Reine Halbleiter sind Materialien, die nur aus einem einzelnen Element bestehen. Verbindungshalbleiter bestehen aus mindestens zwei unterschiedlichen Elementen. Im Periodensystem der Elemente stehen die Reihenhalbleiter in der vierten und in der sechsten Hauptgruppe. Beispiele sind Silizium, Germanium, Selen, Tellur und spezielle Kohlenstoff-Nanostrukturen. Obwohl die Reihenhalbleiter eine gewisse Eigenleitfähigkeit besitzen, reicht diese oftmals nicht aus, um aus ihnen nutzbare Bauelemente wie zum Beispiel Computerchips herzustellen. Um ihre Leitfähigkeit zu erhöhen, dotiert man sie mit anderen Elementen. Wie das geht, zeige ich dir jetzt. Aus dem Chemieunterricht weißt du vielleicht schon, dass Atomkerne von mehreren Elektronenschalen umgeben sind. In der innersten Schale ist Platz für zwei Elektronen. In jeder weiteren Schale können sich bis zu acht Elektronen aufhalten. Wie du bereits gesehen hast, sind die meisten reinen Halbleiter Elemente der vierten Hauptgruppe, wie zum Beispiel Silizium, abgekürzt mit „SI“. Elemente der vierten Hauptgruppe haben auf ihrer äußersten Schale, der Valenzschale, vier Elektronen. So ist das auch beim Silizium. In dieser Valenzschale ist aber eigentlich Platz für acht Elektronen. Das deuten wir dadurch an, dass wir für jeden freien Platz einen leeren Kreis einzeichnen. Jetzt schauen wir uns an, wie das Ganze in einem Siliziumkristall mit vielen Atomen aussieht. Wie unser ursprüngliches Siliziumatom haben auch alle anderen vier Elektronen auf der Valenzschale und auch vier freie Plätze, Liegen jetzt zwei Siliziumatome nah beieinander, so füllt das eine Elektron auf der Valenzschale des Atoms den freien Platz auf der Valenzschale des anderen und umgekehrt. So entsteht eine Elektronenpaarbindung. Da jedes Siliziumatom vier Elektronen und vier freie Plätze hat, kann es solche Bindungen mit vier anderen Atomen eingehen. So sind alle Valenzschalen voll besetzt, was die Energie minimiert, und es bildet sich eine feste Kristallstruktur. Legt man an diesen reinen Halbleiterkristall eine Spannung an, so passiert erst einmal nichts. Erst bei sehr hohen Temperaturen setzt die Eigenleitung des Halbleiters ein. Was uns ja aber eigentlich interessiert, ist, wie man einen Halbleiter dotiert. Dazu geht man folgendermaßen vor: Man tauscht ein Atom aus der vierten Hauptgruppe mit einem aus der fünften Hauptgruppe. Damit hat man keinen reinen Halbleiter mehr, sondern einen Verbindungshalbleiter. In unserem Fall könnte man zum Beispiel ein Siliziumatom gegen ein Phosphoratom, kurz „P“, austauschen. Phosphor hat fünf Elektronen auf der Valenzschale. Wie bisher gehen vier der Elektronen der Valenzschale eine Bindung mit Siliziumatomen ein. Dabei bleibt allerdings ein Elektron übrig. Legt man eine Spannung an, so bewegt sich dieses Elektron zum Pluspol. Diese Elektronenbewegung stellt einen elektrischen Strom dar. Die Ladung des Elektrons ist negativ. Dotiert man also einen Halbleiter aus der vierten Hauptgruppe mit einem Element aus der fünften, so hat man überschüssige negative Ladungsträger. Diese erhöhen die Leitfähigkeit entscheidend. Man sagt, man hat den Halbleiter „n-dotiert“, wobei das „n“ für „negativ“ steht. Es gibt auch noch eine andere Art Halbleiter zu dotieren. Wie, das zeige ich dir jetzt. Man kann nämlich auch ein Element aus der vierten Hauptgruppe durch ein Element aus der dritten Hauptgruppe ersetzen. Zum Beispiel Bor, kurz „B“. Es hat auf der Valenzschale drei Elektronen. Fügt man ein Bor-Atom in unser Siliziumgitter ein, so verbinden sich die drei Elektronen mit drei der umliegenden Siliziumatome. Dabei bleibt ein freier Platz auf der Valenzschale eines Siliziumatoms unbesetzt. Diesen freien Platz nennt man „Loch“. Da ein Loch einem fehlenden Elektron entspricht, ist es gleichbedeutend mit einer positiven Ladung. Legt man nun eine Spannung an, so hüpft ein Elektron auf den Platz, den bisher das Loch besetzt hat, um sich Richtung Pluspol zu bewegen. Hat das Loch seinen neuen Platz erreicht, so hüpft wieder ein Elektron auf seinen Platz. Betrachtet man das ganze andersherum, kann man sagen, dass das Loch zum Minuspol wandert. Da das Loch einer positiven Ladung entspricht und sich bewegt, stellt auch das einen elektrischen Strom dar. Man spricht von einer „positiven Dotierung“, kurz „P-Dotierung“. Mischt man also einen Halbleiter der vierten Hauptgruppe mit einem der dritten, so ist dieser p-dotiert und hat ebenfalls eine stark erhöhte Leitfähigkeit. Außerdem kann man mit dotierten Halbleitern Dioden und Transistoren herstellen. In jedem Computerchip befinden sich Zig Millionen solcher Transistoren. Sie sind somit eines der wichtigsten elektronischen Bauteile, die man hat. Ohne die Dotierung von Halbleitern wäre es nicht möglich, Computer oder Handys herzustellen. Und kannst du dir eine Welt ohne Computer und Handys vorstellen? So. Was hast du eben gelernt? Unter „Eigenleitung“ versteht man, dass reine Halbleiter fähig sind, elektrischen Strom zu leiten. Dabei ist die elektrische Leitfähigkeit in Halbleitern von der Temperatur abhängig. Sie steigt mit der Temperatur. „Reine Halbleiter“ sind Materialien, die nur aus einem einzelnen Element bestehen. Ein solcher reiner Halbleiter ist zum Beispiel Silizium. Um einen Halbleiter der vierten Hauptgruppe negativ zu dotieren, bringt man ein Element der fünften Hauptgruppe mit fünf Elektronen auf der Valenzschale in das Material ein. So bleibt ein negativ geladenes Elektron übrig. Um positiv zu dotieren, bringt man ein Element der dritten Hauptgruppe mit drei Elektronen auf der Valenzschale in das Material ein. So bleibt ein positiv geladenes Loch übrig. Das war es zum Thema „dotierte Halbleiter“. Ich hoffe, du hast was gelernt. Tschüss und bis zum nächsten Mal.

4 Kommentare
  1. wo sind die Aufgaben?

    Von Ruben, vor etwa einem Monat
  2. Dieses Video hat mir sehr geholfen das Thema für meine Klassenarbeit zu verstehen

    Von Emily, vor 10 Monaten
  3. tolles Video, hat mir bei meiner GFS sehr geholfen

    Von Micha F., vor fast 6 Jahren
  4. ja

    Von Ma Elsner, vor etwa 8 Jahren

Dotierung von Halbleitern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Dotierung von Halbleitern kannst du es wiederholen und üben.
  • Gib an, warum Eigenleitung temperaturabhängig ist.

    Tipps

    Elektronenpaarbindungen sind sehr stabil.

    Aus stabilen Bindungen werden Bindungselektronen nur bei hoher Energiezufuhr freigesetzt.

    Lösung

    Halbleiter sind Materialien, deren Valenzen mit stabilen Elektronenpaarbindungen gesättigt sind. Deshalb haben sie nahezu keine freien Elektronen. Elektronenpaarbindungen sind sehr stabil. Erst, wenn dem Atomverband eine Mindestmenge Energie zugeführt wird, können Elektronen aus Bindungen „herausgeschleudert" werden und dann als Ladungsträger fungieren.

  • Erläutere, was mit dem Dotieren erreicht werden soll.

    Tipps

    Elektronenpaarbindungen sind sehr stabil.

    Stabile Paarbindungen sind nur durch Energiezufuhr aufzulösen.

    Stromfluß ist nur mit frei beweglichen Ladungsträgern möglich.

    Lösung

    Nicht-dotierte Halbleiter zeigen ein stark temperaturabhängiges Leitungsverhalten. Aus den stabilen Elektronenpaarbindungen, die einen Halbleiter-Kristall konstituieren, werden Elektronen, die als Ladungsträger verfügbar wären, nur durch hinreichend große Energiezufuhr freigesetzt. Will man mehr frei bewegliche Elektronen im Material, kann man das aber auch dadurch erreichen, dass man entweder Atome einschleust, die ein freies Elektron "übrig" haben, oder Atome, die ein Bindungselektron weniger haben und damit eine Lücke lassen (über die dann Elektronen aus benachbarten Bindungen schrittweise nachrücken können). Diese sog. „Störstellen" sind der Grund für die höhere Leitfähigkeit gegenüber dem reinen Kristall.

  • Erläutere die Wirkung der Dotierung eines Halbleiter-Elements der IV. Hauptgruppe mit Atomen eines Elements der V. Hauptgruppe.

    Tipps

    Valenzelektronen konstituieren Bindungen in Atomverbänden.

    Ersetzt man in regelmäßig gefügten Verbänden einzelne Atome, werden sie sich verschieden einfügen, je nach Anzahl der Valenzelektronen, die sie einbringen.

    Lösung

    Valenzelektronen konstituieren Bindungen in Atomverbänden. Ersetzt man in regelmäßig gefügten Verbänden einzelne Atome, werden die neuen sich verschieden einfügen, je nach Anzahl der Valenzelektronen, die sie einbringen. Hat man im Verband Atome mit vier Valenzelektronen und fügt ein Atom mit fünf Valenzelektronen ein, bleibt ein Valenzelektron frei und kann in einem elektrischen Feld in gerichtete Bewegung versetzt werden.

  • Erkläre die Löcherleitung.

    Tipps

    Rutscht eine geschlossene Reihe von Zuschauern im Kino Schritt um Schritt um einen Platz zur Mitte hin, sieht es so aus, als würde ein leerer Platz von der Mitte nach außen wandern.

    Man könnte also sagen, dass sich nicht eine Person vom Rand wegbewegt, sondern dass sich eine Leerstelle zum Rand hinbewegt.

    Lösung

    Man kann verschiedene Perspektiven einnehmen. Sieht man den Stromfluss als Bewegung von Elektronenkugeln, dann ist die Bewegung eines Lochs ohne Sinn. Aber da es nur zwei Ladungsarten gibt, negative und nicht-negative, ist es für eine Ladungsbilanz gleichgültig, ob man sagt, dass sich an einem Messpunkt die negative Ladung verringert hat oder die nicht-negative angestiegen ist.

  • Benenne, warum der Halbleiter Halb-Leiter heißt.

    Tipps

    Bedenke die Leitfähigkeit.

    Lösung

    Halbleiter werden nach ihrer Leitfähigkeit klassifiziert: Bei niedrigen Temperaturen verhalten sich (reine) Halbleiter eher wie Isolatoren oder Nichtleiter, bei höheren Temperaturen dagegen eher wie Leiter.

  • Unterscheide die Arten der Dotierung.

    Tipps

    Donator: Spender von Elektronen in den Halbleiterverband

    Akzeptor: Empfänger von Elektronen aus dem Halbleiterverband

    Lösung

    Donatoren geben Elektronen in den Atomverband des Halbleiters ab, das heißt, freie Elektronen treten auf: Es wird n-Leitung befördert. Akzeptoren akzeptieren leicht Elektronen aus Bindungen des Atomverbands, das heißt, es werden Lücken im Verband verursacht: Es wird p-Leitung befördert.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.905

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.695

Lernvideos

37.343

Übungen

33.674

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden